Journal of Tissue Engineering and Regenerative Medicine最新文献

筛选
英文 中文
Issue Information 问题信息
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-09-30 DOI: 10.1111/pai.13596
{"title":"Issue Information","authors":"","doi":"10.1111/pai.13596","DOIUrl":"https://doi.org/10.1111/pai.13596","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46589829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome 基于形态学和转录组学深入分析牛肠道类器官和类肠的关系
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-09-20 DOI: 10.1002/term.3351
Juntao Zhang, Juanjuan Li, Penghui Yan, Laizeng He, Xuemei Zhang, Xiaolong Wang, Yake Shi, Lixin Deng, ZhiPing Zhang, Baoyu Zhao
{"title":"In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome","authors":"Juntao Zhang,&nbsp;Juanjuan Li,&nbsp;Penghui Yan,&nbsp;Laizeng He,&nbsp;Xuemei Zhang,&nbsp;Xiaolong Wang,&nbsp;Yake Shi,&nbsp;Lixin Deng,&nbsp;ZhiPing Zhang,&nbsp;Baoyu Zhao","doi":"10.1002/term.3351","DOIUrl":"https://doi.org/10.1002/term.3351","url":null,"abstract":"<p>Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, “natural” organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1032-1046"},"PeriodicalIF":3.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5752752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
FlexMetric bone marrow aspirator yields laboratory and clinically improved results from mesenchymal stem and progenitor cells without centrifugation FlexMetric骨髓抽吸器无需离心即可获得实验室和临床改善的间充质干细胞和祖细胞结果
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-09-16 DOI: 10.1002/term.3348
Robert E. Marx, Paul Amailuk, Neel Patel, Andre Ledoux, Dani Stanbouly
{"title":"FlexMetric bone marrow aspirator yields laboratory and clinically improved results from mesenchymal stem and progenitor cells without centrifugation","authors":"Robert E. Marx,&nbsp;Paul Amailuk,&nbsp;Neel Patel,&nbsp;Andre Ledoux,&nbsp;Dani Stanbouly","doi":"10.1002/term.3348","DOIUrl":"https://doi.org/10.1002/term.3348","url":null,"abstract":"<p>Several devices used to harvest stem/progenitor cells from bone marrow are available to clinicians. This study compared three devices measuring stem cell yields and correlating those yields to bone regeneration. A flexible forward aspirating system Marrow Marxman (MM), a straight needle aspirating on withdrawal system Marrow Cellutions (MC), and a straight needle aspirating on withdrawal and centrifuging the aspirate (BMAC) were compared in a side-to-side patient comparison, as well as tissue engineered bone grafts. The FlexMetric system (MM) produced greater CFU-f values compared to the straight needle (MC) Δ = 1083/ml, <i>p</i> &lt; 0.001 and 1225/ml, <i>p</i> &lt; 0.001 than the BMAC system. This increased stem/progenitor cell yield also translated into a greater radiographic bone density at 6 months Δ = 88.3 Hu, <i>p</i> ≤ 0.001 versus MC and Δ = 116.7, <i>p</i> &lt; 0.001 versus BMAC at 6 months and Δ = 72.2, <i>p</i> &lt; 0.001 and Δ = 93.3, <i>p</i> &lt; 0.001 at 9 months respectively. The increased stem/progenitor cell yield of the MM system clinically translated into greater bone regeneration as measured by bone volume <i>p</i> &lt; 0.014 and <i>p</i> &lt; 0.001 respectively, trabecular thickness <i>p</i> &lt; 0.007 and <i>p</i> &lt; 0.002 respectively, and trabecular separation <i>p</i> = 0.011 and <i>p</i> &lt; 0.001. A flexible bone marrow aspirator produces higher yields of stem/progenitor cells. Higher yields of stem/progenitor cells translate into greater bone regeneration in tissue engineering. Flexmetric technology produces better bone regeneration due to a forward aspiration concept reducing dilution from peripheral blood and its ability to target lining cells along the inner cortex. Centrifugation systems are not required in tissue engineering procedures involving stem/progenitor cells due to nonviability or functional loss from g-forces.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1047-1057"},"PeriodicalIF":3.3,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5887751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration 激活典型Wnt通路促进骨再生的治疗方法
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-09-16 DOI: 10.1002/term.3349
Anna Laura Nelson, GianLuca Fontana, Elizabeth Miclau, Mallory Rongstad, William Murphy, Johnny Huard, Nicole Ehrhart, Chelsea Bahney
{"title":"Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration","authors":"Anna Laura Nelson,&nbsp;GianLuca Fontana,&nbsp;Elizabeth Miclau,&nbsp;Mallory Rongstad,&nbsp;William Murphy,&nbsp;Johnny Huard,&nbsp;Nicole Ehrhart,&nbsp;Chelsea Bahney","doi":"10.1002/term.3349","DOIUrl":"https://doi.org/10.1002/term.3349","url":null,"abstract":"<p>Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"961-976"},"PeriodicalIF":3.3,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5678742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Zwitterionic keratin coating on silk-Laponite fibrous membranes for guided bone regeneration 丝-拉脱石纤维膜两性离子角蛋白涂层引导骨再生
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-09-12 DOI: 10.1002/term.3350
Matineh Atrian, Mahshid Kharaziha, Hanieh Javidan, Farzaneh Alihosseini, Rahmatallah Emadi
{"title":"Zwitterionic keratin coating on silk-Laponite fibrous membranes for guided bone regeneration","authors":"Matineh Atrian,&nbsp;Mahshid Kharaziha,&nbsp;Hanieh Javidan,&nbsp;Farzaneh Alihosseini,&nbsp;Rahmatallah Emadi","doi":"10.1002/term.3350","DOIUrl":"https://doi.org/10.1002/term.3350","url":null,"abstract":"<p>Implant-related infection is one of the main challenges in periodontal diseases. According to the zwitterionic properties of keratin, we aim to develop guided bone regeneration (GBR) membrane with antibacterial and bioactivity properties using a keratin coating. In this study, electrospun silk fibroin (SF)–Laponite (LAP) fibrous membranes were developed as GBR membranes, and keratin extracted from sheep wool was electrosprayed on them. Here, the role of electrospraying time (2, 3, and 4h) on the properties of the GBR membranes was investigated. After physicochemical characterization of the keratin-modified membranes, in vitro bioactivity and degradation rate of the membranes were studied in simulated body fluid and phosphate buffer saline, respectively. Moreover, proliferation and differentiation of mesenchymal stem cells were evaluated in contact with the keratin-modified SF–LAP membrane. Finally, the antibacterial activity of membranes against gram-positive bacteria (<i>Staphylococcus aureus</i>) was investigated. Results demonstrated the successful formation of homogeneous wool keratin coating on SF–LAP fibrous membranes using a simple electrospray process. While wool keratin coating significantly enhanced the elongation and hydrophilicity of the SF–LAP membrane, the mechanical strength was not changed. In addition, keratin coating significantly improved the bioactivity and degradation rate of SF–LAP membranes, owing to the carboxyl groups of amino acids in keratin coating. In addition, the synergic role of LAP nanoparticles and keratin coating drastically improved osteoblast proliferation and differentiation. Finally, the zwitterionic property of wool keratin coating originating from their equal positive (NH<sub>3</sub><sup>+</sup>) and negative (COO<sup>−</sup>) charges considerably improved the antibacterial activity of the SF–LAP membrane. Overall, keratin-coated SF–LAP fibrous membranes with significant mechanical and biological properties could have the potential for GBR membranes.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1019-1031"},"PeriodicalIF":3.3,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6110967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Biomaterials directed activation of a cryostable therapeutic secretome in induced pluripotent stem cell derived mesenchymal stromal cells 在诱导多能干细胞来源的间充质基质细胞中,生物材料定向激活超低温治疗性分泌组
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-08-26 DOI: 10.1002/term.3347
Sara Romanazzo, Chantal Kopecky, Shouyuan Jiang, Riddhesh Doshi, Vipul Mukund, Pallavi Srivastava, Jelena Rnjak-Kovacina, Kilian Kelly, Kristopher A. Kilian
{"title":"Biomaterials directed activation of a cryostable therapeutic secretome in induced pluripotent stem cell derived mesenchymal stromal cells","authors":"Sara Romanazzo,&nbsp;Chantal Kopecky,&nbsp;Shouyuan Jiang,&nbsp;Riddhesh Doshi,&nbsp;Vipul Mukund,&nbsp;Pallavi Srivastava,&nbsp;Jelena Rnjak-Kovacina,&nbsp;Kilian Kelly,&nbsp;Kristopher A. Kilian","doi":"10.1002/term.3347","DOIUrl":"https://doi.org/10.1002/term.3347","url":null,"abstract":"<p>Mesenchymal stem cell therapy has suffered from wide variability in clinical efficacy, largely due to heterogeneous starting cell populations and large-scale cell death during and after implantation. Optimizing the manufacturing process has led to reproducible cell populations that can be cryopreserved for clinical applications. Nevertheless, ensuring a reproducible cell state that persists after cryopreservation remains a significant challenge, and is necessary to ensure reproducible clinical outcomes. Here we demonstrate how matrix-conjugated hydrogel cell culture materials can normalize a population of induced pluripotent stem cell derived mesenchymal stem cells (iPSC-MSCs) to display a defined secretory profile that promotes enhanced neovascularization in vitro and in vivo. Using a protein-conjugated biomaterials screen we identified two conditions—1 kPa collagen and 10 kPa fibronectin coated polyacrylamide gels—that promote reproducible secretion of pro-angiogenic and immunomodulatory cytokines from iPSC-MSCs that enhance tubulogenesis of endothelial cells in Geltrex and neovascularization in chick chorioallantoic membranes. Using defined culture substrates alone, we demonstrate maintenance of secretory activity after cryopreservation for the first time. This advance provides a simple and scalable approach for cell engineering and subsequent manufacturing, toward normalizing and priming a desired cell activity for clinical regenerative medicine.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1008-1018"},"PeriodicalIF":3.3,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5830105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of a biomimetic bioreactor for regenerative endodontics research 再生牙髓学研究中仿生生物反应器的研制
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-08-25 DOI: 10.1002/term.3346
Aurélien Louvrier, Marie Kroemer, Lisa Terranova, Florent Meyer, Marion Tissot, Edouard Euvrard, Florelle Gindraux, Christophe Meyer, Gwena?l Rolin
{"title":"Development of a biomimetic bioreactor for regenerative endodontics research","authors":"Aurélien Louvrier,&nbsp;Marie Kroemer,&nbsp;Lisa Terranova,&nbsp;Florent Meyer,&nbsp;Marion Tissot,&nbsp;Edouard Euvrard,&nbsp;Florelle Gindraux,&nbsp;Christophe Meyer,&nbsp;Gwena?l Rolin","doi":"10.1002/term.3346","DOIUrl":"https://doi.org/10.1002/term.3346","url":null,"abstract":"<p>In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1–3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"998-1007"},"PeriodicalIF":3.3,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6033448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of resolvin D1 on bone regeneration in a rat calvarial defect model resolvin D1对大鼠颅骨缺损模型骨再生的影响
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-08-18 DOI: 10.1002/term.3345
Xiaofeng Jiang, Jing Liu, Si Li, Yingfei Qiu, Xiaoli Wang, Xiaoli He, Torbj?rn ?. Pedersen, Kamal Mustafa, Ying Xue, Manal Mustafa, Alpdogan Kantarci, Zhe Xing
{"title":"The effect of resolvin D1 on bone regeneration in a rat calvarial defect model","authors":"Xiaofeng Jiang,&nbsp;Jing Liu,&nbsp;Si Li,&nbsp;Yingfei Qiu,&nbsp;Xiaoli Wang,&nbsp;Xiaoli He,&nbsp;Torbj?rn ?. Pedersen,&nbsp;Kamal Mustafa,&nbsp;Ying Xue,&nbsp;Manal Mustafa,&nbsp;Alpdogan Kantarci,&nbsp;Zhe Xing","doi":"10.1002/term.3345","DOIUrl":"https://doi.org/10.1002/term.3345","url":null,"abstract":"<p>Resolvin D1 (RvD1) is a pro-resolving lipid mediator of inflammation, endogenously synthesized from omega-3 docosahexaenoic acid. The purpose of this study was to investigate the effect of RvD1 on bone regeneration using a rat calvarial defect model. Collagen 3D nanopore scaffold (COL) and Pluronic F127 hydrogel (F127) incorporated with RvD1 (RvD1-COL-F127 group) or COL and F127 (COL-F127 group) were implanted in symmetrical calvarial defects. After implantation, RvD1 was administrated subcutaneously every 7 days for 4 weeks. The rats were sacrificed at weeks 1 and 8 post-implantation. Tissue samples were analyzed by real-time reverse transcriptase-polymerase chain reaction and histology at week 1. Radiographical and histological analyses were done at week 8. At week 1, calvarial defects treated with RvD1 exhibited decreased numbers of inflammatory cells and tartrate-resistant acid phosphatase (TRAP) positive cells, greater numbers of newly formed blood vessels, upregulated gene expression of vascular endothelial growth factor and alkaline phosphatase, and downregulated gene expression of receptor activator of nuclear factor-κB ligand, interleukin-1β and tumor necrosis factor-α. At week 8, the radiographical results showed that osteoid area fraction of the RvD1-COL-F127 group was higher than that of the COL-F127 group, and histological examination exhibited enhanced osteoid formation and newly formed blood vessels in the RvD1-COL-F127 group. In conclusion, this study showed that RvD1 enhanced bone formation and vascularization in rat calvarial defects.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"987-997"},"PeriodicalIF":3.3,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5912263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Studies on oxygen availability and the creation of natural and artificial oxygen gradients in gelatin-methacryloyl hydrogel 3D cell culture 明胶-甲基丙烯酰水凝胶三维细胞培养中氧可用性及自然和人工氧梯度产生的研究
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-08-13 DOI: 10.1002/term.3344
Carola Schmitz, Iliyana Pepelanova, Christian Ude, Antonina Lavrentieva
{"title":"Studies on oxygen availability and the creation of natural and artificial oxygen gradients in gelatin-methacryloyl hydrogel 3D cell culture","authors":"Carola Schmitz,&nbsp;Iliyana Pepelanova,&nbsp;Christian Ude,&nbsp;Antonina Lavrentieva","doi":"10.1002/term.3344","DOIUrl":"https://doi.org/10.1002/term.3344","url":null,"abstract":"<p>Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"977-986"},"PeriodicalIF":3.3,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5830488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clumps of mesenchymal stem cells/extracellular matrix complexes directly reconstruct the functional periodontal tissue in a rat periodontal defect model 在大鼠牙周缺损模型中,间充质干细胞/细胞外基质复合物团块直接重建功能牙周组织
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-08-11 DOI: 10.1002/term.3343
Hisakatsu Sone, Mikihito Kajiya, Katsuhiro Takeda, Shinya Sasaki, Susumu Horikoshi, Souta Motoike, Shin Morimoto, Hiroki Yoshii, Mai Yoshino, Tomoyuki Iwata, Kazuhisa Ouhara, Shinji Matsuda, Noriyoshi Mizuno
{"title":"Clumps of mesenchymal stem cells/extracellular matrix complexes directly reconstruct the functional periodontal tissue in a rat periodontal defect model","authors":"Hisakatsu Sone,&nbsp;Mikihito Kajiya,&nbsp;Katsuhiro Takeda,&nbsp;Shinya Sasaki,&nbsp;Susumu Horikoshi,&nbsp;Souta Motoike,&nbsp;Shin Morimoto,&nbsp;Hiroki Yoshii,&nbsp;Mai Yoshino,&nbsp;Tomoyuki Iwata,&nbsp;Kazuhisa Ouhara,&nbsp;Shinji Matsuda,&nbsp;Noriyoshi Mizuno","doi":"10.1002/term.3343","DOIUrl":"https://doi.org/10.1002/term.3343","url":null,"abstract":"<p>Periodontitis is an inflammatory disease characterized by tooth-supporting periodontal tissue destruction, including the cementum, periodontal ligament, and alveolar bone. To regenerate the damaged periodontal tissue, mesenchymal stem cells (MSCs) have attracted much scientific and medical attention. Recently, we generated clumps of MSCs/extracellular matrix (ECM) complexes (C-MSCs), which consist of cells and self-produced ECM. C-MSCs can be transplanted into lesion areas without artificial scaffold to induce tissue regeneration. To develop reliable scaffold-free periodontal tissue regenerative cell therapy by C-MSCs, this study investigated the periodontal tissue regenerative capacity of C-MSCs and the behavior of the transplanted cells. Rat bone marrow-derived MSCs were isolated from rat femur. Confluent cells were scratched using a micropipette tip and then torn off. The sheet was rolled to make a three-dimensional round clump of cells, C-MSCs. Then, ten C-MSCs were grafted into a rat periodontal fenestration defect model. To trace the grafted cells in the defect, PKH26-labeled cells were also employed. Micro-CT and histological analyses demonstrated that transplantation of C-MSCs induced successful periodontal tissue regeneration in the rat periodontal defect model. Interestingly, the majority of the cells in the reconstructed tissue, including cementum, periodontal ligaments, and alveolar bone, were PKH26 positive donor cells, suggesting the direct tissue formation by MSCs. This study demonstrates a promising scaffold-free MSCs transplantation strategy for periodontal disease using C-MSCs and offers the significance of multipotency of MSCs to induce successful periodontal tissue regeneration.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"945-955"},"PeriodicalIF":3.3,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6200426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信