Daniela P. Vasconcelos, Artur P. águas, Judite N. Barbosa
{"title":"The inflammasome in biomaterial-driven immunomodulation","authors":"Daniela P. Vasconcelos, Artur P. águas, Judite N. Barbosa","doi":"10.1002/term.3361","DOIUrl":"https://doi.org/10.1002/term.3361","url":null,"abstract":"<p>Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1109-1120"},"PeriodicalIF":3.3,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3361","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6064565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulu Liu, Ya Liu, Zhiyuan Bai, Dongfang Wang, Yiyang Xu, Qian Li
{"title":"Nanofibrous polytetrafluoroethylene/poly(ε-caprolactone) membrane with hierarchical structures for vascular patch","authors":"Yulu Liu, Ya Liu, Zhiyuan Bai, Dongfang Wang, Yiyang Xu, Qian Li","doi":"10.1002/term.3354","DOIUrl":"https://doi.org/10.1002/term.3354","url":null,"abstract":"<p>With the prevalence of cardiovascular diseases, developing cardiovascular supplements is becoming increasingly urgent. The ability of cells to rapidly adhere and proliferate to achieve endothelialization is extremely important for vascular grafts. In this work, we electrospun polytetrafluoroethylene (PTFE) nanofibrous membranes and used induced crystallization to manufacture poly(ε-caprolactone) (PCL) shish-kebab microstructures on PTFE nanofibers to overcome the inertness of PTFE, and promote cell adhesion and proliferation. PCL lamella periodically grew on the surface of PTFE nanofibers yielding a hierarchical structure, which improved the biocompatibility and mechanical properties of the PTFE nanofibrous membrane. The deposition of PCL lamella improved the hydrophilicity of electrospun PTFE nanofibers membrane, leading to good cell proliferation and adhesion. Also, due to the surface inertness of the substrate material PTFE, this PTFE/PCL composite film has good anti-platelet adhesion properties. Furthermore, cell proliferation could be regulated by controlling the integrity of the PCL crystal network. The vascular patch showed similar mechanical properties to natural blood vessels, providing a new strategy for vascular tissue engineering.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1163-1172"},"PeriodicalIF":3.3,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6064567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christofer Baldwin, Johntaehwan Kim, Srikanth Sivaraman, Raj R. Rao
{"title":"Stem cell-based strategies for skeletal muscle tissue engineering","authors":"Christofer Baldwin, Johntaehwan Kim, Srikanth Sivaraman, Raj R. Rao","doi":"10.1002/term.3355","DOIUrl":"https://doi.org/10.1002/term.3355","url":null,"abstract":"<p>Skeletal muscle tissue engineering has been a key area of focus over the years and has been of interest for developing regenerative strategies for injured or degenerative skeletal muscle tissue. Stem cells have gained increased attention as sources for developing skeletal muscle tissue for subsequent studies or potential treatments. Focus has been placed on understanding the molecular pathways that govern skeletal muscle formation in development to advance differentiation of stem cells towards skeletal muscle fates in vitro. Use of growth factors and transcription factors have long been the method for guiding skeletal muscle differentiation in vitro. However, further research in small molecule induced differentiation offers a xeno-free option that could result from use of animal derived factors.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1061-1068"},"PeriodicalIF":3.3,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6109873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Weisel, Rachael Cohen, Jason A. Spector, Yulia Sapir-Lekhovitser
{"title":"Accelerated vascularization of a novel collagen hydrogel dermal template","authors":"Adam Weisel, Rachael Cohen, Jason A. Spector, Yulia Sapir-Lekhovitser","doi":"10.1002/term.3356","DOIUrl":"https://doi.org/10.1002/term.3356","url":null,"abstract":"<p>Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. <i>In vitro</i> analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1173-1183"},"PeriodicalIF":3.3,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5810267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ipek Karacan, Besim Ben-Nissan, Jerran Santos, Stanley Yiu, Peta Bradbury, Stella M. Valenzuela, Joshua Chou
{"title":"In vitro testing and efficacy of poly-lactic acid coating incorporating antibiotic loaded coralline bioceramic on Ti6Al4V implant against Staphylococcus aureus","authors":"Ipek Karacan, Besim Ben-Nissan, Jerran Santos, Stanley Yiu, Peta Bradbury, Stella M. Valenzuela, Joshua Chou","doi":"10.1002/term.3353","DOIUrl":"https://doi.org/10.1002/term.3353","url":null,"abstract":"<p>Biofilm formation on an implant surface is most commonly caused by the human pathogenic bacteria <i>Staphylococcus aureus</i>, which can lead to implant related infections and failure. It is a major problem for both implantable orthopedic and maxillofacial devices. The current antibiotic treatments are typically delivered orally or in an injectable form. They are not highly effective in preventing or removing biofilms, and they increase the risk of antibiotic resistance of bacteria and have a dose-dependent negative biological effect on human cells. Our aim was to improve current treatments via a localized and controlled antibiotic delivery-based implant coating system to deliver the antibiotic, gentamicin (Gm). The coating contains coral skeleton derived hydroxyapatite powders (HAp) that act as antibiotic carrier particles and have a biodegradable poly-lactic acid (PLA) thin film matrix. The system is designed to prevent implant related infections while avoiding the deleterious effects of high concentration antibiotics in implants on local cells including primary human adipose derived stem cells (ADSCs). Testing undertaken in this study measured the rate of <i>S</i>. <i>aureus</i> biofilm formation and determined the growth rate and proliferation of ADSCs. After 24 h, <i>S</i>. <i>aureus</i> biofilm formation and the percentage of live cells found on the surfaces of all 5%–30% (w/w) PLA-Gm-(HAp-Gm) coated Ti6Al4V implants was lower than the control samples. Furthermore, Ti6Al4V implants coated with up to 10% (w/w) PLA-Gm-(HAp-Gm) did not have noticeable Gm related adverse effect on ADSCs, as assessed by morphological and surface attachment analyses. These results support the use and application of the antibacterial PLA-Gm-(HAp-Gm) thin film coating design for implants, as an antibiotic release control mechanism to prevent implant-related infections.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1149-1162"},"PeriodicalIF":3.3,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6123225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael A. Kowalski, Lorenzo M. Fernandes, Kyle E. Hammond, Sameh Labib, Hicham Drissi, Jay M. Patel
{"title":"Cartilage-penetrating hyaluronic acid hydrogel preserves tissue content and reduces chondrocyte catabolism","authors":"Michael A. Kowalski, Lorenzo M. Fernandes, Kyle E. Hammond, Sameh Labib, Hicham Drissi, Jay M. Patel","doi":"10.1002/term.3352","DOIUrl":"https://doi.org/10.1002/term.3352","url":null,"abstract":"<p>Articular cartilage injuries have a limited healing capacity and, due to inflammatory and catabolic activities, often experience progressive degeneration towards osteoarthritis. Current repair techniques generally provide short-term symptomatic relief; however, the regeneration of hyaline cartilage remains elusive, leaving both the repair tissue and surrounding healthy tissue susceptible to long-term wear. Therefore, methods to preserve cartilage following injury, especially from matrix loss and catabolism, are needed to delay, or even prevent, the deteriorative process. The goal of this study was to develop and evaluate a cartilage-penetrating hyaluronic-acid (HA) hydrogel to improve damaged cartilage biomechanics and prevent tissue degeneration. At time zero, the HA-based hydrogel provided a 46.5% increase in compressive modulus and a decrease in permeability after simulated degeneration of explants (collagenase application). Next, in a degenerative culture model (interleukin-1β [IL-1β] for 2 weeks), hydrogel application prior to or midway through the culture mitigated detrimental changes to compressive modulus and permeability observed in non-treated explants. Furthermore, localized loss of proteoglycan was observed in degenerative culture conditions alone (non-treated), but hydrogel administration significantly improved the retention of matrix elements. Finally, NITEGE staining and gene expression analysis showed the ability of the HA gel to decrease chondrocyte catabolic activity. These results highlight the importance of reinforcing damaged cartilage with a biomaterial system to both preserve tissue content and reduce catabolism associated with injury and inflammation.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1138-1148"},"PeriodicalIF":3.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5900916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information","authors":"","doi":"10.1111/pai.13596","DOIUrl":"https://doi.org/10.1111/pai.13596","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46589829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome","authors":"Juntao Zhang, Juanjuan Li, Penghui Yan, Laizeng He, Xuemei Zhang, Xiaolong Wang, Yake Shi, Lixin Deng, ZhiPing Zhang, Baoyu Zhao","doi":"10.1002/term.3351","DOIUrl":"https://doi.org/10.1002/term.3351","url":null,"abstract":"<p>Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, “natural” organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1032-1046"},"PeriodicalIF":3.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5752752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert E. Marx, Paul Amailuk, Neel Patel, Andre Ledoux, Dani Stanbouly
{"title":"FlexMetric bone marrow aspirator yields laboratory and clinically improved results from mesenchymal stem and progenitor cells without centrifugation","authors":"Robert E. Marx, Paul Amailuk, Neel Patel, Andre Ledoux, Dani Stanbouly","doi":"10.1002/term.3348","DOIUrl":"https://doi.org/10.1002/term.3348","url":null,"abstract":"<p>Several devices used to harvest stem/progenitor cells from bone marrow are available to clinicians. This study compared three devices measuring stem cell yields and correlating those yields to bone regeneration. A flexible forward aspirating system Marrow Marxman (MM), a straight needle aspirating on withdrawal system Marrow Cellutions (MC), and a straight needle aspirating on withdrawal and centrifuging the aspirate (BMAC) were compared in a side-to-side patient comparison, as well as tissue engineered bone grafts. The FlexMetric system (MM) produced greater CFU-f values compared to the straight needle (MC) Δ = 1083/ml, <i>p</i> < 0.001 and 1225/ml, <i>p</i> < 0.001 than the BMAC system. This increased stem/progenitor cell yield also translated into a greater radiographic bone density at 6 months Δ = 88.3 Hu, <i>p</i> ≤ 0.001 versus MC and Δ = 116.7, <i>p</i> < 0.001 versus BMAC at 6 months and Δ = 72.2, <i>p</i> < 0.001 and Δ = 93.3, <i>p</i> < 0.001 at 9 months respectively. The increased stem/progenitor cell yield of the MM system clinically translated into greater bone regeneration as measured by bone volume <i>p</i> < 0.014 and <i>p</i> < 0.001 respectively, trabecular thickness <i>p</i> < 0.007 and <i>p</i> < 0.002 respectively, and trabecular separation <i>p</i> = 0.011 and <i>p</i> < 0.001. A flexible bone marrow aspirator produces higher yields of stem/progenitor cells. Higher yields of stem/progenitor cells translate into greater bone regeneration in tissue engineering. Flexmetric technology produces better bone regeneration due to a forward aspiration concept reducing dilution from peripheral blood and its ability to target lining cells along the inner cortex. Centrifugation systems are not required in tissue engineering procedures involving stem/progenitor cells due to nonviability or functional loss from g-forces.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1047-1057"},"PeriodicalIF":3.3,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5887751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Laura Nelson, GianLuca Fontana, Elizabeth Miclau, Mallory Rongstad, William Murphy, Johnny Huard, Nicole Ehrhart, Chelsea Bahney
{"title":"Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration","authors":"Anna Laura Nelson, GianLuca Fontana, Elizabeth Miclau, Mallory Rongstad, William Murphy, Johnny Huard, Nicole Ehrhart, Chelsea Bahney","doi":"10.1002/term.3349","DOIUrl":"https://doi.org/10.1002/term.3349","url":null,"abstract":"<p>Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"961-976"},"PeriodicalIF":3.3,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5678742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}