Aurélien Louvrier, Marie Kroemer, Lisa Terranova, Florent Meyer, Marion Tissot, Edouard Euvrard, Florelle Gindraux, Christophe Meyer, Gwena?l Rolin
{"title":"Development of a biomimetic bioreactor for regenerative endodontics research","authors":"Aurélien Louvrier, Marie Kroemer, Lisa Terranova, Florent Meyer, Marion Tissot, Edouard Euvrard, Florelle Gindraux, Christophe Meyer, Gwena?l Rolin","doi":"10.1002/term.3346","DOIUrl":null,"url":null,"abstract":"<p>In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1–3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"998-1007"},"PeriodicalIF":3.1000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3346","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1–3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.