再生牙髓学研究中仿生生物反应器的研制

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Aurélien Louvrier, Marie Kroemer, Lisa Terranova, Florent Meyer, Marion Tissot, Edouard Euvrard, Florelle Gindraux, Christophe Meyer, Gwena?l Rolin
{"title":"再生牙髓学研究中仿生生物反应器的研制","authors":"Aurélien Louvrier,&nbsp;Marie Kroemer,&nbsp;Lisa Terranova,&nbsp;Florent Meyer,&nbsp;Marion Tissot,&nbsp;Edouard Euvrard,&nbsp;Florelle Gindraux,&nbsp;Christophe Meyer,&nbsp;Gwena?l Rolin","doi":"10.1002/term.3346","DOIUrl":null,"url":null,"abstract":"<p>In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1–3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"998-1007"},"PeriodicalIF":3.1000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a biomimetic bioreactor for regenerative endodontics research\",\"authors\":\"Aurélien Louvrier,&nbsp;Marie Kroemer,&nbsp;Lisa Terranova,&nbsp;Florent Meyer,&nbsp;Marion Tissot,&nbsp;Edouard Euvrard,&nbsp;Florelle Gindraux,&nbsp;Christophe Meyer,&nbsp;Gwena?l Rolin\",\"doi\":\"10.1002/term.3346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1–3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 11\",\"pages\":\"998-1007\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3346\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3346","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在再生牙髓学研究和生物材料发展的背景下,本研究旨在开发和测试人类牙齿的仿生生物反应器原型。该生物反应器被设计成复制一个形状的牙管,与一个再现根尖周围区域的腔相连,并通过两个流体通道进行冲洗,以再现根尖残余血管供应。采用静电纺丝/静电喷涂法制备由聚乳酸/聚己内酯-单宁酸(PLA/PCL-TA)组成的试验生物材料,经校准后置入牙管。该生物材料首先用于评价其吸积能力和生物反应器内的氧饱和度。然后,将牙髓干细胞(DPSCs)在PLA/PCL-TA锥体上培养1-3周;然后对细胞的粘附、增殖和迁移进行组织学评估。在10分钟内获得完全的渗吸生物材料,并且随着时间的推移氧饱和度稳定。在生物反应器中,DPSCs能够粘附、增殖和迁移到生物材料的表面和内部。总之,该生物反应器成功用于测试支持牙髓再生的生物材料,并构成了一个更接近临床现实的新的体外实验模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a biomimetic bioreactor for regenerative endodontics research

In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1–3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信