{"title":"微流控纺丝技术3D打印具有多空心结构的非均质微纤维","authors":"Wei Li, Kun Yao, Lingling Tian, Chang Xue, Xu Zhang, Xinghua Gao","doi":"10.1002/term.3339","DOIUrl":null,"url":null,"abstract":"<p>Tissues with tubular structures play important roles in the human bodies, such as mass transport, nutrition exchange, and waste filtration. However, it remains a challenge to generate micro-scaffolds with well-defined luminal structure in biomedical field. In this study, we proposed a novel method to fabricate multi-component microfibers with multi-hollow structure via microfluidic spinning, which can subsequently be integrated with 3D printing for tissue-like block assembling. To achieve this goal, we fabricated a microchip using a 3D printed template with adjustable heights. Utilizing this microchip, we successfully generated the Calcium alginate microfibers with multi-components and defined hollow structures in a controllable manner. Then this microfluidic spinning method was integrated with a 3D mobile platform to assemble the microfibers into a grid-like 3D architecture. The resulted 3D scaffolds exhibited good organization and maintained the hollow structure of the fibers. Furthermore, we successfully developed a bronchus model utilizing this strategy by loading pulmonary bronchial epithelium cells and endothelial cells into microfibers with two hollow structures. The present strategy provides a potential platform to rebuild the lumen-like tissues using microfibers.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 10","pages":"913-922"},"PeriodicalIF":3.1000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning\",\"authors\":\"Wei Li, Kun Yao, Lingling Tian, Chang Xue, Xu Zhang, Xinghua Gao\",\"doi\":\"10.1002/term.3339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tissues with tubular structures play important roles in the human bodies, such as mass transport, nutrition exchange, and waste filtration. However, it remains a challenge to generate micro-scaffolds with well-defined luminal structure in biomedical field. In this study, we proposed a novel method to fabricate multi-component microfibers with multi-hollow structure via microfluidic spinning, which can subsequently be integrated with 3D printing for tissue-like block assembling. To achieve this goal, we fabricated a microchip using a 3D printed template with adjustable heights. Utilizing this microchip, we successfully generated the Calcium alginate microfibers with multi-components and defined hollow structures in a controllable manner. Then this microfluidic spinning method was integrated with a 3D mobile platform to assemble the microfibers into a grid-like 3D architecture. The resulted 3D scaffolds exhibited good organization and maintained the hollow structure of the fibers. Furthermore, we successfully developed a bronchus model utilizing this strategy by loading pulmonary bronchial epithelium cells and endothelial cells into microfibers with two hollow structures. The present strategy provides a potential platform to rebuild the lumen-like tissues using microfibers.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 10\",\"pages\":\"913-922\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3339\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3339","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning
Tissues with tubular structures play important roles in the human bodies, such as mass transport, nutrition exchange, and waste filtration. However, it remains a challenge to generate micro-scaffolds with well-defined luminal structure in biomedical field. In this study, we proposed a novel method to fabricate multi-component microfibers with multi-hollow structure via microfluidic spinning, which can subsequently be integrated with 3D printing for tissue-like block assembling. To achieve this goal, we fabricated a microchip using a 3D printed template with adjustable heights. Utilizing this microchip, we successfully generated the Calcium alginate microfibers with multi-components and defined hollow structures in a controllable manner. Then this microfluidic spinning method was integrated with a 3D mobile platform to assemble the microfibers into a grid-like 3D architecture. The resulted 3D scaffolds exhibited good organization and maintained the hollow structure of the fibers. Furthermore, we successfully developed a bronchus model utilizing this strategy by loading pulmonary bronchial epithelium cells and endothelial cells into microfibers with two hollow structures. The present strategy provides a potential platform to rebuild the lumen-like tissues using microfibers.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.