resolvin D1对大鼠颅骨缺损模型骨再生的影响

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaofeng Jiang, Jing Liu, Si Li, Yingfei Qiu, Xiaoli Wang, Xiaoli He, Torbj?rn ?. Pedersen, Kamal Mustafa, Ying Xue, Manal Mustafa, Alpdogan Kantarci, Zhe Xing
{"title":"resolvin D1对大鼠颅骨缺损模型骨再生的影响","authors":"Xiaofeng Jiang,&nbsp;Jing Liu,&nbsp;Si Li,&nbsp;Yingfei Qiu,&nbsp;Xiaoli Wang,&nbsp;Xiaoli He,&nbsp;Torbj?rn ?. Pedersen,&nbsp;Kamal Mustafa,&nbsp;Ying Xue,&nbsp;Manal Mustafa,&nbsp;Alpdogan Kantarci,&nbsp;Zhe Xing","doi":"10.1002/term.3345","DOIUrl":null,"url":null,"abstract":"<p>Resolvin D1 (RvD1) is a pro-resolving lipid mediator of inflammation, endogenously synthesized from omega-3 docosahexaenoic acid. The purpose of this study was to investigate the effect of RvD1 on bone regeneration using a rat calvarial defect model. Collagen 3D nanopore scaffold (COL) and Pluronic F127 hydrogel (F127) incorporated with RvD1 (RvD1-COL-F127 group) or COL and F127 (COL-F127 group) were implanted in symmetrical calvarial defects. After implantation, RvD1 was administrated subcutaneously every 7 days for 4 weeks. The rats were sacrificed at weeks 1 and 8 post-implantation. Tissue samples were analyzed by real-time reverse transcriptase-polymerase chain reaction and histology at week 1. Radiographical and histological analyses were done at week 8. At week 1, calvarial defects treated with RvD1 exhibited decreased numbers of inflammatory cells and tartrate-resistant acid phosphatase (TRAP) positive cells, greater numbers of newly formed blood vessels, upregulated gene expression of vascular endothelial growth factor and alkaline phosphatase, and downregulated gene expression of receptor activator of nuclear factor-κB ligand, interleukin-1β and tumor necrosis factor-α. At week 8, the radiographical results showed that osteoid area fraction of the RvD1-COL-F127 group was higher than that of the COL-F127 group, and histological examination exhibited enhanced osteoid formation and newly formed blood vessels in the RvD1-COL-F127 group. In conclusion, this study showed that RvD1 enhanced bone formation and vascularization in rat calvarial defects.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"987-997"},"PeriodicalIF":3.1000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3345","citationCount":"7","resultStr":"{\"title\":\"The effect of resolvin D1 on bone regeneration in a rat calvarial defect model\",\"authors\":\"Xiaofeng Jiang,&nbsp;Jing Liu,&nbsp;Si Li,&nbsp;Yingfei Qiu,&nbsp;Xiaoli Wang,&nbsp;Xiaoli He,&nbsp;Torbj?rn ?. Pedersen,&nbsp;Kamal Mustafa,&nbsp;Ying Xue,&nbsp;Manal Mustafa,&nbsp;Alpdogan Kantarci,&nbsp;Zhe Xing\",\"doi\":\"10.1002/term.3345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Resolvin D1 (RvD1) is a pro-resolving lipid mediator of inflammation, endogenously synthesized from omega-3 docosahexaenoic acid. The purpose of this study was to investigate the effect of RvD1 on bone regeneration using a rat calvarial defect model. Collagen 3D nanopore scaffold (COL) and Pluronic F127 hydrogel (F127) incorporated with RvD1 (RvD1-COL-F127 group) or COL and F127 (COL-F127 group) were implanted in symmetrical calvarial defects. After implantation, RvD1 was administrated subcutaneously every 7 days for 4 weeks. The rats were sacrificed at weeks 1 and 8 post-implantation. Tissue samples were analyzed by real-time reverse transcriptase-polymerase chain reaction and histology at week 1. Radiographical and histological analyses were done at week 8. At week 1, calvarial defects treated with RvD1 exhibited decreased numbers of inflammatory cells and tartrate-resistant acid phosphatase (TRAP) positive cells, greater numbers of newly formed blood vessels, upregulated gene expression of vascular endothelial growth factor and alkaline phosphatase, and downregulated gene expression of receptor activator of nuclear factor-κB ligand, interleukin-1β and tumor necrosis factor-α. At week 8, the radiographical results showed that osteoid area fraction of the RvD1-COL-F127 group was higher than that of the COL-F127 group, and histological examination exhibited enhanced osteoid formation and newly formed blood vessels in the RvD1-COL-F127 group. In conclusion, this study showed that RvD1 enhanced bone formation and vascularization in rat calvarial defects.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 11\",\"pages\":\"987-997\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3345\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3345\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3345","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

Resolvin D1 (RvD1)是一种促炎症的脂质介质,由内源性的omega-3二十二碳六烯酸合成。本研究的目的是利用大鼠颅骨缺损模型研究RvD1对骨再生的影响。将胶原三维纳米孔支架(COL)和Pluronic F127水凝胶(F127)与RvD1 (RvD1-COL-F127组)或COL + F127 (COL-F127组)植入对称颅骨缺损。植入后,RvD1每7天皮下给药,连续4周。大鼠于植入后第1周和第8周处死。第1周采用实时逆转录-聚合酶链反应和组织学分析组织样本。第8周进行影像学和组织学分析。第1周,RvD1处理颅骨缺损后,炎症细胞和抗酒石酸酸性磷酸酶(TRAP)阳性细胞数量减少,新生血管数量增加,血管内皮生长因子和碱性磷酸酶基因表达上调,核因子-κB配体受体激活因子、白细胞介素-1β和肿瘤坏死因子-α基因表达下调。第8周,影像学结果显示RvD1-COL-F127组骨样面积分数高于COL-F127组,组织学检查显示RvD1-COL-F127组骨样形成增强,血管新生。总之,本研究表明RvD1增强了大鼠颅骨缺损的骨形成和血管形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of resolvin D1 on bone regeneration in a rat calvarial defect model

Resolvin D1 (RvD1) is a pro-resolving lipid mediator of inflammation, endogenously synthesized from omega-3 docosahexaenoic acid. The purpose of this study was to investigate the effect of RvD1 on bone regeneration using a rat calvarial defect model. Collagen 3D nanopore scaffold (COL) and Pluronic F127 hydrogel (F127) incorporated with RvD1 (RvD1-COL-F127 group) or COL and F127 (COL-F127 group) were implanted in symmetrical calvarial defects. After implantation, RvD1 was administrated subcutaneously every 7 days for 4 weeks. The rats were sacrificed at weeks 1 and 8 post-implantation. Tissue samples were analyzed by real-time reverse transcriptase-polymerase chain reaction and histology at week 1. Radiographical and histological analyses were done at week 8. At week 1, calvarial defects treated with RvD1 exhibited decreased numbers of inflammatory cells and tartrate-resistant acid phosphatase (TRAP) positive cells, greater numbers of newly formed blood vessels, upregulated gene expression of vascular endothelial growth factor and alkaline phosphatase, and downregulated gene expression of receptor activator of nuclear factor-κB ligand, interleukin-1β and tumor necrosis factor-α. At week 8, the radiographical results showed that osteoid area fraction of the RvD1-COL-F127 group was higher than that of the COL-F127 group, and histological examination exhibited enhanced osteoid formation and newly formed blood vessels in the RvD1-COL-F127 group. In conclusion, this study showed that RvD1 enhanced bone formation and vascularization in rat calvarial defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信