Plant MethodsPub Date : 2025-01-07DOI: 10.1186/s13007-025-01323-6
Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M Sideli, Christopher F Strock, Craig T Beil, Moira J Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa
{"title":"Correction: BerryPortraits: phenotyping of ripening traits in cranberry (Vaccinium macrocarpon Ait.) With YOLOv8.","authors":"Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M Sideli, Christopher F Strock, Craig T Beil, Moira J Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa","doi":"10.1186/s13007-025-01323-6","DOIUrl":"https://doi.org/10.1186/s13007-025-01323-6","url":null,"abstract":"","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"3"},"PeriodicalIF":4.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2025-01-07DOI: 10.1186/s13007-024-01322-z
Jun Ma, Fangyuan Zhao, Yinxia Zhang, Xinhui Tian, Wenhua Du
{"title":"Effects of hormone concentrations on anther cultures and the acquisition of regenerated plants of five awnless triticale genotypes.","authors":"Jun Ma, Fangyuan Zhao, Yinxia Zhang, Xinhui Tian, Wenhua Du","doi":"10.1186/s13007-024-01322-z","DOIUrl":"https://doi.org/10.1186/s13007-024-01322-z","url":null,"abstract":"<p><strong>Background: </strong>The rapid production of doubled haploids by anther culture technology is an important breeding method for awnless triticale. The aim of this study was to explore the effects of triticale genotype and the types and ratios of exogenous hormones in the medium on the efficiency of triticale anther culture.</p><p><strong>Results: </strong>Anthers of five triticale genotypes were cultured on four different callus induction media and the calli were induced to differentiate into green plants by culture on three different differentiation media. The triticale genotype T8004 showed the best performance in anther culture, with a callus induction rate of 28.64%, a green plantlet differentiation frequency of 33.33%, and a green plantlet production rate of 2.78%. The highest callus induction rates were obtained by culturing anthers on C3 medium (the main components were potassium nitrate, glutamine, inositol, etc.), and the highest green plantlet differentiation frequency was obtained by culturing calli on D2 differentiation medium (the main components were potassium nitrate, ammonium nitrate, calcium chloride dihydrate, etc.). Flow cytometry analyses showed that 15 of the 20 DH0 generation plants that grew normally in the field were doubled haploids. The average chromosome doubling success rate was 55.6%. Analyses of agronomic traits showed that the 11 DH1 doubled haploid plants reached the standard for awnless triticale, so they are candidate materials for breeding new awnless triticale varieties.</p><p><strong>Conclusion: </strong>The anther culture technology of triticale was optimized in this paper, which made it possible to rapidly breed homozygous varieties of awnless triticale.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"2"},"PeriodicalIF":4.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a robust and efficient virus-induced gene silencing system for reverse genetics in recalcitrant Camellia drupifera capsules.","authors":"Hongjian Shen, Huajie Chen, Weimeng Li, Shan He, Boyong Liao, Wanyu Xiong, Yang Shen, Yongjuan Li, Yanru Gao, Yong Quan Li, Bipei Zhang","doi":"10.1186/s13007-024-01320-1","DOIUrl":"10.1186/s13007-024-01320-1","url":null,"abstract":"<p><strong>Background: </strong>Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.</p><p><strong>Results: </strong>Herein, we initiated the Tobacco rattle virus (TRV)-elicited VIGS in Camellia drupifera capsules with an orthogonal analysis including three factors: silencing target, virus inoculation approach, and capsule developmental stage. To facilitate observation and statistical analysis, two genes predominantly involved in pericarp pigmentation were selected for silencing efficiency: CdCRY1 (coding for a key photoreceptor affecting light-responsive perceivable anthocyanin accumulation in exocarps) and CdLAC15 (coding for an oxidase catalyzing the oxidative polymerization of proanthocyanidins in mesocarps, resulting in unperceivable red-hued mesocarps). The infiltration efficiency achieved for each gene was ~ 93.94% by pericarp cutting immersion. The optimal VIGS effect for each gene was observed at early (~ 69.80% for CdCRY1) and mid stages (~ 90.91% for CdLAC15) of capsule development.</p><p><strong>Conclusions: </strong>Using our optimized VIGS system, CdCRY1 and CdLAC15 expression was successfully knocked down in Camellia drupifera pericarps, leading to fading phenotypes in exocarps and mesocarps, respectively. The established VIGS system may facilitate functional genomic studies in tea oil camellia and other recalcitrant fruits of woody plants.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"1"},"PeriodicalIF":4.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-12-27DOI: 10.1186/s13007-024-01306-z
Christopher J Baros, Jeremy Beerkens, Martha Ludwig
{"title":"Agrobacterium-mediated transient transformation of Flaveria bidentis leaves: a novel method to examine the evolution of C<sub>4</sub> photosynthesis.","authors":"Christopher J Baros, Jeremy Beerkens, Martha Ludwig","doi":"10.1186/s13007-024-01306-z","DOIUrl":"10.1186/s13007-024-01306-z","url":null,"abstract":"<p><p>The genus Flaveria has been studied extensively as a model for the evolution of C<sub>4</sub> photosynthesis. Thus far, molecular analyses in this genus have been limited due to a dearth of genomic information and the lack of a rapid and efficient transformation protocol. Since their development, Agrobacterium-mediated transient transformation protocols have been instrumental in understanding many biological processes in a range of plant species. However, this technique has not been applied to the genus Flaveria. Here, an efficient protocol for the Agrobacterium-mediated transient transformation of the leaves of the C<sub>4</sub> species Flaveria bidentis is presented. This technique has the distinct advantages of rapid turnaround, the ability to co-transform with multiple constructs, and the capacity to assay coding and non-coding regions of Flaveria genomes in a homologous context. To illustrate the utility of this protocol, the quantitative transcriptional regulation of phosphoenolpyruvate carboxylase, the primary carboxylase of C<sub>4</sub> plants, was investigated. A 24 bp region in the ppcA1 proximal promoter was found to elicit high levels of reporter gene expression. The Agrobacterium-mediated transient transformation of F. bidentis leaves will accelerate the understanding of the biology and evolution of C<sub>4</sub> photosynthesis in the genus Flaveria as well as in other C<sub>4</sub> lineages.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"193"},"PeriodicalIF":4.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-12-24DOI: 10.1186/s13007-024-01319-8
Joo-Seok Park, Yoram Choi, Jin-Hyun Kim, Chaeyoung Lee, Min-Gyun Jeong, Yeong-Il Jeong, Yang Jae Kang, Young-Soo Chung, Hong-Kyu Choi
{"title":"Development of a web-based high-throughput marker design program: CAPS (cleaved amplified polymorphic sequence) Maker.","authors":"Joo-Seok Park, Yoram Choi, Jin-Hyun Kim, Chaeyoung Lee, Min-Gyun Jeong, Yeong-Il Jeong, Yang Jae Kang, Young-Soo Chung, Hong-Kyu Choi","doi":"10.1186/s13007-024-01319-8","DOIUrl":"10.1186/s13007-024-01319-8","url":null,"abstract":"<p><strong>Background: </strong>Genetic markers are crucial for breeding crops with desired agronomic traits, and their development can be expedited using next-generation sequencing (NGS) and bioinformatics tools. Numerous tools have been developed to design molecular markers, enhancing the convenience, accuracy, and efficiency of molecular breeding. However, these tools primarily focus on genetic variants within short user-input sequences, despite the availability of extensive omics data for genomic variants. To design molecular markers encompassing a vast number of genetic variants at the genome-wide scale in soybean, an automatic system capable of handling NGS-based big data is necessary.</p><p><strong>Results: </strong>In this study, we developed a robust digital platform, the CAPS Maker, for designing cleaved amplified polymorphic sequence (CAPS)/derived CAPS (dCAPS) markers in soybeans. This platform simplifies the systematic design of genomic markers with a user-friendly graphical interface, featuring a 'SNP Browser' and 'Primer Table', along with internal programs (e.g., the eHT-PCR module) to design unique primer pairs for highly duplicated genomes like soybean.</p><p><strong>Conclusions: </strong>The CAPS Maker's efficiency and reliability were experimentally verified by comparing its marker predictions with actual experimental results. Consequently, breeders can easily design CAPS/dCAPS markers using the CAPS Maker platform to develop new soybean cultivars with beneficial agronomic traits. This platform is freely accessible at https://tgil.donga.ac.kr/CAPSMaker .</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"192"},"PeriodicalIF":4.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-12-24DOI: 10.1186/s13007-024-01317-w
Yuantao Han, Cong Zhang, Xiaoyun Zhan, Qiuxian Huang, Zheng Wang
{"title":"Crossing multiple life stages: fine-grained classification of agricultural pests.","authors":"Yuantao Han, Cong Zhang, Xiaoyun Zhan, Qiuxian Huang, Zheng Wang","doi":"10.1186/s13007-024-01317-w","DOIUrl":"10.1186/s13007-024-01317-w","url":null,"abstract":"<p><strong>Background: </strong>Pest infestation poses a major challenge in the field of global plant protection, seriously threatening crop safety. To enhance crop protection and optimize control strategies, this study is dedicated to the precise identification of various pests that harm crops, thereby ensuring the efficient use of agricultural pesticides and achieving optimal plant protection.</p><p><strong>Results: </strong>Currently, pest identification technologies lack accuracy, especially in recognizing pests across different growth stages. To address this issue, we constructed a large pest dataset that includes 102 pest species and 369 pest stages, totaling 51,670 images. This dataset focuses on the identification of pest growth stages, aimed at improving the efficiency of pest management and the effectiveness of plant protection. Moreover, we have introduced two innovative technologies to tackle the significant differences between pest growth stages: a Multi-stage Co-supervision mechanism and a Spatial Attention module. These technologies significantly enhance the model's ability to extract key features, thus boosting recognition accuracy. Compared to the industry-leading Vision Transformer-based methods, our model shows a significant improvement, increasing accuracy by 3.67% and the F1 score by 2.49%, without a significant increase in the number of parameters.</p><p><strong>Conclusions: </strong>Extensive experimental validation has demonstrated our model's significant advantages in enhancing pest identification accuracy, which holds substantial practical significance for the precise application of pesticides and crop protection.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"191"},"PeriodicalIF":4.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-12-19DOI: 10.1186/s13007-024-01303-2
Jun Zhang, Dongfang Zhang, Jingyan Liu, Yuhong Zhou, Xiaoshuo Cui, Xiaofei Fan
{"title":"DSCONV-GAN: a UAV-BASED model for Verticillium Wilt disease detection in Chinese cabbage in complex growing environments.","authors":"Jun Zhang, Dongfang Zhang, Jingyan Liu, Yuhong Zhou, Xiaoshuo Cui, Xiaofei Fan","doi":"10.1186/s13007-024-01303-2","DOIUrl":"10.1186/s13007-024-01303-2","url":null,"abstract":"<p><p>Verticillium wilt greatly hampers Chinese cabbage growth, causing significant yield limitations. Rapid and accurate detection of Verticillium wilt in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) can provide significant agronomic benefits. Here, we propose a detection model, DSConv-GAN, which is based on images acquired by an unmanned aerial vehicle (UAV). Based on YOLOv8, with the addition of the dynamic snake convolution (DSConv) module and the improved loss function maximum possible distance intersection-over-union (MPDIoU), we acquired enhanced complex structures and global characteristics in Chinese cabbage images under different growth conditions. To reduce the difficulty of acquiring diseased Chinese cabbage data, a cycle-consistent generative adversarial network (CycleGAN) was used to simulate and generate images of the Verticillium wilt characteristics for multiple fields. The detection of lightly infected plants achieved precision, recall, mean average precision (mAP), and F1-score of 81.3, 86.6, 87.7, and 83.9%, respectively. DSConv-GAN outperforms other models in terms of precision, detection speed, robustness, and generalization. The model is combined with software to improve the practicability of the proposed method. Our results demonstrate DSConv-GAN to be an effective intelligent farming tool that provides early, rapid, and accurate detection of Chinese cabbage Verticillium wilt in complex growing environments.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"186"},"PeriodicalIF":4.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporal resolution trumps spectral resolution in UAV-based monitoring of cereal senescence dynamics.","authors":"Flavian Tschurr, Lukas Roth, Nicola Storni, Olivia Zumsteg, Achim Walter, Jonas Anderegg","doi":"10.1186/s13007-024-01308-x","DOIUrl":"10.1186/s13007-024-01308-x","url":null,"abstract":"<p><strong>Background: </strong>Senescence is a complex developmental process that is regulated by a multitude of environmental, genetic, and physiological factors. Optimizing the timing and dynamics of this process has the potential to significantly impact crop adaptation to future climates and for maintaining grain yield and quality, particularly under terminal stress. Accurately capturing the dynamics of senescence and isolating the genetic variance component requires frequent assessment as well as intense field testing. Here, we evaluated and compared the potential of temporally dense drone-based RGB- and multispectral image sequences for this purpose. Regular measurements were made throughout the grain filling phase for more than 600 winter wheat genotypes across three experiments in a high-yielding environment of temperate Europe. At the plot level, multispectral and RGB indices were extracted, and time series were modelled using different parametric and semi-parametric models. The capability of these approaches to track senescence was evaluated based on estimated model parameters, with corresponding parameters derived from repeated visual scorings as a reference. This approach represents the need for remote-sensing based proxies that capture the entire process, from the onset to the conclusion of senescence, as well as the rate of the progression.</p><p><strong>Results: </strong>Our results indicated the efficacy of both RGB and multispectral reflectance indices in monitoring senescence dynamics and accurately identifying key temporal parameters characterizing this phase, comparable to more sophisticated proximal sensing techniques that offer limited throughput. Correlation coefficients of up to 0.8 were observed between multispectral (NDVIred668-index) and visual scoring, respectively 0.9 between RGB (ExGR-index) and visual scoring. Sub-sampling of measurement events demonstrated that the timing and frequency of measurements were highly influential, arguably even more than the choice of sensor.</p><p><strong>Conclusions: </strong>Remote-sensing based proxies derived from both RGB and multispectral sensors can capture the senescence process accurately. The sub-sampling emphasized the importance of timely and frequent assessments, but also highlighted the need for robust methods that enable such frequent assessments to be made under variable environmental conditions. The proposed measurement and data processing strategies can improve the measurement and understanding of senescence dynamics, facilitating adaptive crop breeding strategies in the context of climate change.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"188"},"PeriodicalIF":4.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-12-19DOI: 10.1186/s13007-024-01315-y
Justus Detring, Abel Barreto, Anne-Katrin Mahlein, Stefan Paulus
{"title":"Quality assurance of hyperspectral imaging systems for neural network supported plant phenotyping.","authors":"Justus Detring, Abel Barreto, Anne-Katrin Mahlein, Stefan Paulus","doi":"10.1186/s13007-024-01315-y","DOIUrl":"10.1186/s13007-024-01315-y","url":null,"abstract":"<p><strong>Background: </strong>This research proposes an easy to apply quality assurance pipeline for hyperspectral imaging (HSI) systems used for plant phenotyping. Furthermore, a concept for the analysis of quality assured hyperspectral images to investigate plant disease progress is proposed. The quality assurance was applied to a handheld line scanning HSI-system consisting of evaluating spatial and spectral quality parameters as well as the integrated illumination. To test the spatial accuracy at different working distances, the sine-wave-based spatial frequency response (s-SFR) was analysed. The spectral accuracy was assessed by calculating the correlation of calibration-material measurements between the HSI-system and a non-imaging spectrometer. Additionally, different illumination systems were evaluated by analysing the spectral response of sugar beet canopies. As a use case, time series HSI measurements of sugar beet plants infested with Cercospora leaf spot (CLS) were performed to estimate the disease severity using convolutional neural network (CNN) supported data analysis.</p><p><strong>Results: </strong>The measurements of the calibration material were highly correlated with those of the non-imaging spectrometer (r>0.99). The resolution limit was narrowly missed at each of the tested working distances. Slight sharpness differences within individual images could be detected. The use of the integrated LED illumination for HSI can cause a distortion of the spectral response at 677nm and 752nm. The performance for CLS diseased pixel detection of the established CNN was sufficient to estimate a reliable disease severity progression from quality assured hyperspectral measurements with external illumination.</p><p><strong>Conclusion: </strong>The quality assurance pipeline was successfully applied to evaluate a handheld HSI-system. The s-SFR analysis is a valuable method for assessing the spatial accuracy of HSI-systems. Comparing measurements between HSI-systems and a non-imaging spectrometer can provide reliable results on the spectral accuracy of the tested system. This research emphasizes the importance of evenly distributed diffuse illumination for HSI. Although the tested system showed shortcomings in image resolution, sharpness, and illumination, the high spectral accuracy of the tested HSI-system, supported by external illumination, enabled the establishment of a neural network-based concept to determine the severity and progression of CLS. The data driven quality assurance pipeline can be easily applied to any other HSI-system to ensure high quality HSI.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"189"},"PeriodicalIF":4.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-12-19DOI: 10.1186/s13007-024-01311-2
Yoshiaki Ueda
{"title":"Development of an infiltration-based RNA preservation method for cryogen-free storage of leaves for gene expression analyses in field-grown plants.","authors":"Yoshiaki Ueda","doi":"10.1186/s13007-024-01311-2","DOIUrl":"10.1186/s13007-024-01311-2","url":null,"abstract":"<p><strong>Background: </strong>Gene expression is a fundamental process for plants to express their phenotype, and its analysis is the basis of molecular studies. However, the instability of RNA often poses an obstacle to analyzing plants grown in fields or remote locations where the availability of liquid nitrogen or dry ice is limited. To deepen our understanding of plant phenotypes and tolerance to field-specific stresses, it is crucial to develop methodologies to maintain plant RNA intact and safely transfer it for downstream analyses such as qPCR and RNA-seq.</p><p><strong>Results: </strong>In this study, the author developed a novel tissue preservation method that involved the infiltration of RNA preservation solution into the leaf apoplast using a syringe and subsequent storage at 4 °C. RNA-seq using samples stored for 5 d and principal component analyses showed that rice leaves treated with the infiltration method maintained the original transcriptome pattern better than those treated with the traditional method when the leaves were simply immersed in the solution. Additionally, it was also found that extracted RNA can be transported with minimum risk of degradation when it is bound to the membrane of RNA extraction kits. The developed infiltration method was applied to rice plants grown in a local farmer's field in northern Madagascar to analyze the expression of nutrient-responsive genes, suggesting nutrient imbalances in some of the fields examined.</p><p><strong>Conclusions: </strong>This study showed that the developed infiltration method was effective in preserving the transcriptome status of rice and sorghum leaves when liquid nitrogen or a deep freezer is not available. The developed method was useful for diagnosing plants in the field based on the expression of nutrient-responsive marker genes. Moreover, the method used to protect RNA samples from degradation during transportation offers the possibility to use them for RNA-seq. This novel technique could pave the way for revealing the molecular basis of plant phenotypes by accelerating gene expression analyses using plant samples that are unique in the field.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"187"},"PeriodicalIF":4.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}