Plant MethodsPub Date : 2024-10-01DOI: 10.1186/s13007-024-01279-z
Grace Handy, Imogen Carter, A Rob Mackenzie, Adriane Esquivel-Muelbert, Abraham George Smith, Daniela Yaffar, Joanne Childs, Marie Arnaud
{"title":"Variation in forest root image annotation by experts, novices, and AI.","authors":"Grace Handy, Imogen Carter, A Rob Mackenzie, Adriane Esquivel-Muelbert, Abraham George Smith, Daniela Yaffar, Joanne Childs, Marie Arnaud","doi":"10.1186/s13007-024-01279-z","DOIUrl":"10.1186/s13007-024-01279-z","url":null,"abstract":"<p><strong>Background: </strong>The manual study of root dynamics using images requires huge investments of time and resources and is prone to previously poorly quantified annotator bias. Artificial intelligence (AI) image-processing tools have been successful in overcoming limitations of manual annotation in homogeneous soils, but their efficiency and accuracy is yet to be widely tested on less homogenous, non-agricultural soil profiles, e.g., that of forests, from which data on root dynamics are key to understanding the carbon cycle. Here, we quantify variance in root length measured by human annotators with varying experience levels. We evaluate the application of a convolutional neural network (CNN) model, trained on a software accessible to researchers without a machine learning background, on a heterogeneous minirhizotron image dataset taken in a multispecies, mature, deciduous temperate forest.</p><p><strong>Results: </strong>Less experienced annotators consistently identified more root length than experienced annotators. Root length annotation also varied between experienced annotators. The CNN root length results were neither precise nor accurate, taking ~ 10% of the time but significantly overestimating root length compared to expert manual annotation (p = 0.01). The CNN net root length change results were closer to manual (p = 0.08) but there remained substantial variation.</p><p><strong>Conclusions: </strong>Manual root length annotation is contingent on the individual annotator. The only accessible CNN model cannot yet produce root data of sufficient accuracy and precision for ecological applications when applied to a complex, heterogeneous forest image dataset. A continuing evaluation and development of accessible CNNs for natural ecosystems is required.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"154"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on canopy extraction method for narrowband spectral images based on superpixel color gradation skewness distribution features.","authors":"Hongfeng Yu, Yongqian Ding, Pei Zhang, Furui Zhang, Xianglin Dou, Zhengmeng Chen","doi":"10.1186/s13007-024-01281-5","DOIUrl":"10.1186/s13007-024-01281-5","url":null,"abstract":"<p><strong>Background: </strong>Crop phenotype extraction devices based on multiband narrowband spectral images can effectively detect the physiological and biochemical parameters of crops, which plays a positive role in guiding the development of precision agriculture. Although the narrowband spectral image canopy extraction method is a fundamental algorithm for the development of crop phenotype extraction devices, developing a highly real-time and embedded integrated narrowband spectral image canopy extraction method remains challenging owing to the small difference between the narrowband spectral image canopy and background.</p><p><strong>Methods: </strong>This study identified and validated the skewed distribution of leaf color gradation in narrowband spectral images. By introducing kurtosis and skewness feature parameters, a canopy extraction method based on a superpixel skewed color gradation distribution was proposed for narrowband spectral images. In addition, different types of parameter combinations were input to construct two classifier models, and the contribution of the skewed distribution feature parameters to the proposed canopy extraction method was evaluated to confirm the effectiveness of introducing skewed leaf color skewed distribution features.</p><p><strong>Results: </strong>Leaf color gradient skewness verification was conducted on 4200 superpixels of different sizes, and 4190 superpixels conformed to the skewness distribution. The intersection over union (IoU) between the soil background and canopy of the expanded leaf color skewed distribution feature parameters was 90.41%, whereas that of the traditional Otsu segmentation algorithm was 77.95%. The canopy extraction method used in this study performed significantly better than the traditional threshold segmentation method, using the same training set, Y1 (without skewed parameters) and Y2 (with skewed parameters) Bayesian classifier models were constructed. After evaluating the segmentation effect of introducing skewed parameters, the average classification accuracies Acc_Y1 of the Y1 model and Acc_Y2 of the Y2 model were 72.02% and 91.76%, respectively, under the same test conditions. This indicates that introducing leaf color gradient skewed parameters can significantly improve the accuracy of Bayesian classifiers for narrowband spectral images of the canopy and soil background.</p><p><strong>Conclusions: </strong>The introduction of kurtosis and skewness as leaf color skewness feature parameters can expand the expression of leaf color information in narrowband spectral images. The narrowband spectral image canopy extraction method based on superpixel color skewness distribution features can effectively segment the canopy and soil background in narrowband spectral images, thereby providing a new solution for crop canopy phenotype feature extraction.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"155"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-30DOI: 10.1186/s13007-024-01264-6
Joseph Carter, Joshua Hoffman, Braxton Fjeldsted, Grant Ogilvie, Douglas D Cook
{"title":"Measurement of maize stalk shear moduli.","authors":"Joseph Carter, Joshua Hoffman, Braxton Fjeldsted, Grant Ogilvie, Douglas D Cook","doi":"10.1186/s13007-024-01264-6","DOIUrl":"10.1186/s13007-024-01264-6","url":null,"abstract":"<p><p>Maize is the most grown feed crop in the United States. Due to wind storms and other factors, 5% of maize falls over annually. The longitudinal shear modulus of maize stalk tissues is currently unreported and may have a significant influence on stalk failure. To better understand the causes of this phenomenon, maize stalk material properties need to be measured so that they can be used as material constants in computational models that provide detailed analysis of maize stalk failure. This study reports longitudinal shear modulus of maize stalk tissue through repeated torsion testing of dry and fully mature maize stalks. Measurements were focused on the two tissues found in maize stalks: the hard outer rind and the soft inner pith. Uncertainty analysis and comparison of multiple methodologies indicated that all measurements are subject to low error and bias. The results of this study will allow researchers to better understand maize stalk failure modes through computational modeling. This will allow researchers to prevent annual maize loss through later studies. This study also provides a methodology that could be used or adapted in the measurement of tissues from other plants such as sorghum, sugarcane, etc.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"152"},"PeriodicalIF":4.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-30DOI: 10.1186/s13007-024-01277-1
Yang Zhou, Honghao Zhou, Yue Chen
{"title":"An automated phenotyping method for Chinese Cymbidium seedlings based on 3D point cloud.","authors":"Yang Zhou, Honghao Zhou, Yue Chen","doi":"10.1186/s13007-024-01277-1","DOIUrl":"10.1186/s13007-024-01277-1","url":null,"abstract":"<p><p>Aiming at the problems of low efficiency and high cost in determining the phenotypic parameters of Cymbidium seedlings by artificial approaches, this study proposed a fully automated measurement scheme for some phenotypic parameters based on point cloud. The key point or difficulty is to design a segmentation method for individual tillers according to the morphology-specific structure. After determining the branch points, two rounds of segmentation schemes were designed. The non-overlapping part of each tiller and the overlapping parts of each ramet are separated in the first round based on the edge point cloud-based segmentation, while in the second round, the overlapping part was sliced along the horizontal direction according to the weight ratio of the tillers above, to obtain the complete point cloud of all tillers. The core superiority of the algorithm is that the segmentation fits the tiller growth direction well, and the extracted skeleton points of tillers are close to the actual growth direction, significantly improving the prediction accuracy of the subsequent phenotypic parameters. Five phenotypic parameters, plant height, leaf number, leaf length, leaf width and leaf area, were automatically calculated. Through experiments, the accuracy of the five parameters reached 98.6%, 100%, 92.2%, 89.1%, and 82.3%, respectively, which reach the needs of various phenotypic applications.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"151"},"PeriodicalIF":4.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-30DOI: 10.1186/s13007-024-01278-0
Yucheng Cai, Yan Li, Xuerui Qi, Jianqing Zhao, Li Jiang, Yongchao Tian, Yan Zhu, Weixing Cao, Xiaohu Zhang
{"title":"A deep learning approach for deriving wheat phenology from near-surface RGB image series using spatiotemporal fusion.","authors":"Yucheng Cai, Yan Li, Xuerui Qi, Jianqing Zhao, Li Jiang, Yongchao Tian, Yan Zhu, Weixing Cao, Xiaohu Zhang","doi":"10.1186/s13007-024-01278-0","DOIUrl":"10.1186/s13007-024-01278-0","url":null,"abstract":"<p><p>Accurate monitoring of wheat phenological stages is essential for effective crop management and informed agricultural decision-making. Traditional methods often rely on labour-intensive field surveys, which are prone to subjective bias and limited temporal resolution. To address these challenges, this study explores the potential of near-surface cameras combined with an advanced deep-learning approach to derive wheat phenological stages from high-quality, real-time RGB image series. Three deep learning models based on three different spatiotemporal feature fusion methods, namely sequential fusion, synchronous fusion, and parallel fusion, were constructed and evaluated for deriving wheat phenological stages with these near-surface RGB image series. Moreover, the impact of different image resolutions, capture perspectives, and model training strategies on the performance of deep learning models was also investigated. The results indicate that the model using the sequential fusion method is optimal, with an overall accuracy (OA) of 0.935, a mean absolute error (MAE) of 0.069, F1-score (F1) of 0.936, and kappa coefficients (Kappa) of 0.924 in wheat phenological stages. Besides, the enhanced image resolution of 512 × 512 pixels and a suitable image capture perspective, specifically a sensor viewing angle of 40° to 60° vertically, introduce more effective features for phenological stage detection, thereby enhancing the model's accuracy. Furthermore, concerning the model training, applying a two-step fine-tuning strategy will also enhance the model's robustness to random variations in perspective. This research introduces an innovative approach for real-time phenological stage detection and provides a solid foundation for precision agriculture. By accurately deriving critical phenological stages, the methodology developed in this study supports the optimization of crop management practices, which may result in improved resource efficiency and sustainability across diverse agricultural settings. The implications of this work extend beyond wheat, offering a scalable solution that can be adapted to monitor other crops, thereby contributing to more efficient and sustainable agricultural systems.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"153"},"PeriodicalIF":4.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-28DOI: 10.1186/s13007-024-01274-4
Cintia H D Sagawa, Geoffrey Thomson, Benoit Mermaz, Corina Vernon, Siqi Liu, Yannick Jacob, Vivian F Irish
{"title":"An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus.","authors":"Cintia H D Sagawa, Geoffrey Thomson, Benoit Mermaz, Corina Vernon, Siqi Liu, Yannick Jacob, Vivian F Irish","doi":"10.1186/s13007-024-01274-4","DOIUrl":"https://doi.org/10.1186/s13007-024-01274-4","url":null,"abstract":"<p><p>CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"148"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-28DOI: 10.1186/s13007-024-01276-2
L Gargiulo, G Mele, L G Izzo, L E Romano, G Aronne
{"title":"Local mapping of root orientation traits by X-ray micro-CT and 3d image analysis: A study case on carrot seedlings grown in simulated vs real weightlessness.","authors":"L Gargiulo, G Mele, L G Izzo, L E Romano, G Aronne","doi":"10.1186/s13007-024-01276-2","DOIUrl":"https://doi.org/10.1186/s13007-024-01276-2","url":null,"abstract":"<p><strong>Background: </strong>Root phenotyping is particularly challenging because of complexity and inaccessibility of root apparatus. Orientation is one of the most important architectural traits of roots and its characterization is generally addressed using multiple approaches often based on overall measurements which are difficult to correlate to plant specific physiological aspects and its genetic features. Hence, a 3D image analysis approach, based on the recent method of Straumit, is proposed in this study to obtain a local mapping of root angles.</p><p><strong>Results: </strong>Proposed method was applied here on radicles of carrot seedlings grown in real weightlessness on the International Space Station (ISS) and on Earth simulated weightlessness by clinorotation. A reference experiment in 1 g static condition on Earth was also performed. Radicles were imaged by X-ray micro-CT and two novel root orientation traits were defined: the \"root angle to sowing plane\" (RASP) providing accurate angle distributions for each analysed radicle and the \"root orientation changes\" (ROC) number. The parameters of the RASP distributions and the ROC values did not exhibit any significant difference in orientation between radicles grown under clinorotation and on the ISS. Only a slight thickening in root corners was found in simulated vs real weightlessness. Such results showed that a simple uniaxial clinostat can be an affordable analog in experimental studies reckoning on weightless radicles growth.</p><p><strong>Conclusions: </strong>The proposed local orientation mapping approach can be extended also to different root systems providing a contribution in the challenging task of phenotyping complex and important plant structures such as roots.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"150"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-28DOI: 10.1186/s13007-024-01271-7
Piotr Mariusz Pieczywek, Artur Nosalewicz, Artur Zdunek
{"title":"A novel application of laser speckle imaging technique for prediction of hypoxic stress of apples.","authors":"Piotr Mariusz Pieczywek, Artur Nosalewicz, Artur Zdunek","doi":"10.1186/s13007-024-01271-7","DOIUrl":"https://doi.org/10.1186/s13007-024-01271-7","url":null,"abstract":"<p><strong>Background: </strong>Fruit storage methods such as dynamic controlled atmosphere (DCA) technology enable adjusting the level of oxygen in the storage room, according to the physiological state of the product to slow down the ripening process. However, the successful application of DCA requires precise and reliable sensors of the oxidative stress of the fruit. In this study, respiration rate and chlorophyll fluorescence (CF) signals were evaluated after introducing a novel predictors of apples' hypoxic stress based on laser speckle imaging technique (LSI).</p><p><strong>Results: </strong>Both chlorophyll fluorescence and LSI signals were equally good for stress detection in principle. However, in an application with automatic detection based on machine learning models, the LSI signal proved to be superior, due to its stability and measurement repeatability. Moreover, the shortcomings of the CF signal appear to be its inability to indicate oxygen stress in tissues with low chlorophyll content but this does not apply to LSI. A comparison of different LSI signal processing methods showed that method based on the dynamics of changes in image content was better indicators of stress than methods based on measurements of changes in pixel brightness (inertia moment or laser speckle contrast analysis). Data obtained using the near-infrared laser provided better prediction capabilities, compared to the laser with red light.</p><p><strong>Conclusions: </strong>The study showed that the signal from the scattered laser light phenomenon is a good predictor for the oxidative stress of apples. Results showed that effective prediction using LSI was possible and did not require additional signals. The proposed method has great potential as an alternative indicator of fruit oxidative stress, which can be applied in modern storage systems with a dynamically controlled atmosphere.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"147"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant MethodsPub Date : 2024-09-28DOI: 10.1186/s13007-024-01256-6
Patrick Langan, Emilie Cavel, Joey Henchy, Villő Bernád, Paul Ruel, Katie O'Dea, Keshawa Yatagampitiya, Hervé Demailly, Laurent Gutierrez, Sónia Negrão
{"title":"Evaluating waterlogging stress response and recovery in barley (Hordeum vulgare L.): an image-based phenotyping approach.","authors":"Patrick Langan, Emilie Cavel, Joey Henchy, Villő Bernád, Paul Ruel, Katie O'Dea, Keshawa Yatagampitiya, Hervé Demailly, Laurent Gutierrez, Sónia Negrão","doi":"10.1186/s13007-024-01256-6","DOIUrl":"https://doi.org/10.1186/s13007-024-01256-6","url":null,"abstract":"<p><p>Waterlogging is expected to become a more prominent yield restricting stress for barley as rainfall frequency is increasing in many regions due to climate change. The duration of waterlogging events in the field is highly variable throughout the season, and this variation is also observed in experimental waterlogging studies. Such variety of protocols make intricate physiological responses challenging to assess and quantify. To assess barley waterlogging tolerance in controlled conditions, we present an optimal duration and setup of simulated waterlogging stress using image-based phenotyping. Six protocols durations, 5, 10, and 14 days of stress with and without seven days of recovery, were tested. To quantify the physiological effects of waterlogging on growth and greenness, we used top down and side view RGB (Red-Green-Blue) images. These images were taken daily throughout each of the protocols using the PSI PlantScreen™ imaging platform. Two genotypes of two-row spring barley, grown in glasshouse conditions, were subjected to each of the six protocols, with stress being imposed at the three-leaf stage. Shoot biomass and root imaging data were analysed to determine the optimal stress protocol duration, as well as to quantify the growth and morphometric changes of barley in response to waterlogging stress. Our time-series results show a significant growth reduction and alteration of greenness, allowing us to determine an optimal protocol duration of 14 days of stress and seven days of recovery for controlled conditions. Moreover, to confirm the reproducibility of this protocol, we conducted the same experiment in a different facility equipped with RGB and chlorophyll fluorescence imaging sensors. Our results demonstrate that the selected protocol enables the assessment of genotypic differences, which allow us to further determine tolerance responses in a glasshouse environment. Altogether, this work presents a new and reproducible image-based protocol to assess early stage waterlogging tolerance, empowering a precise quantification of waterlogging stress relevant markers such as greenness, Fv/Fm and growth rates.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"146"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyramid-YOLOv8: a detection algorithm for precise detection of rice leaf blast.","authors":"Qiang Cao, Dongxue Zhao, Jinpeng Li, JinXuan Li, Guangming Li, Shuai Feng, Tongyu Xu","doi":"10.1186/s13007-024-01275-3","DOIUrl":"https://doi.org/10.1186/s13007-024-01275-3","url":null,"abstract":"<p><p>Rice blast is the primary disease affecting rice yield and quality, and its effective detection is essential to ensure rice yield and promote sustainable agricultural production. To address traditional disease detection methods' time-consuming and inefficient nature, we proposed a method called Pyramid-YOLOv8 for rapid and accurate rice leaf blast disease detection in this study. The algorithm is built on the YOLOv8x network framework and features a multi-attention feature fusion network structure. This structure enhances the original feature pyramid structure and works with an additional detection head for improved performance. Additionally, this study designs a lightweight C2F-Pyramid module to enhance the model's computational efficiency. In the comparison experiments, Pyramid-YOLOv8 shows excellent performance with a mean Average Precision (mAP) of 84.3%, which is an improvement of 9.9%, 4.3%, 7.4%, 6.1%, 1.5%, 3.7%, and 8.2% compared to the models Faster-RCNN, RT-DETR, YOLOv3-SPP, YOLOv5x, YOLOv9e, and YOLOv10x, respectively. Additionally, it reaches a detection speed of 62.5 FPS; the model comprises only 42.0 M parameters. Meanwhile, the model size and Floating Point Operations (FLOPs) are reduced by 41.7% and 23.8%, respectively. These results demonstrate the high efficiency of Pyramid-YOLOv8 in detecting rice leaf blast. In summary, the Pyramid-YOLOv8 algorithm developed in this study offers a robust theoretical foundation for rice disease detection and introduces a new perspective on disease management and prevention strategies in agricultural production.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"149"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}