{"title":"An improved chilli pepper flower detection approach based on YOLOv8.","authors":"Zhi-Yong Wang, Cui-Ping Zhang","doi":"10.1186/s13007-025-01390-9","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial pollination can considerably improve pollination success and boost chilli pepper fruit set and quality when grown in enclosed environments (e.g., greenhouses). Artificial pollination, on the other hand, raises production costs while also necessitating specific operating abilities. The precise and efficient identification of pepper blossoms is a critical step in the development of robotic pollinators or pollination drones. In this paper, we propose a pepper flower detection method based on YOLOv8 that incorporates multi-scale, attention, and conditional information. To begin, the CBAM structure that incorporates edge information is integrated into Backbone to expand the feature extraction receptive field and facilitate the learning of long-distance dependency. The BERT model is then used to encode conditional information, which is integrated into the backbone via the ELAN layer to assist the training and inference processes. Finally, an improved MPDIoU is applied to increase detection accuracy while increasing flexibility. The experimental results show that the modification enhances the network depth and reduces the number of parameters from 4M to 2.85M, while improving the mean average accuracy (mAP) by 3.1% over the baseline approach. The study's findings can help in crop object detection. The chilli pepper flower dataset: https://drive.google.com/file/d/1cKNie_iAzx-K4iPLQRVdyiOKV1d9zHrF/view?usp=drive_link The source code is available in https://drive.google.com/drive/folders/1ubNnKu7PWYAdUXvbs4Z2OBAVcSAQ3WLd?usp=drive_link .</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"71"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01390-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial pollination can considerably improve pollination success and boost chilli pepper fruit set and quality when grown in enclosed environments (e.g., greenhouses). Artificial pollination, on the other hand, raises production costs while also necessitating specific operating abilities. The precise and efficient identification of pepper blossoms is a critical step in the development of robotic pollinators or pollination drones. In this paper, we propose a pepper flower detection method based on YOLOv8 that incorporates multi-scale, attention, and conditional information. To begin, the CBAM structure that incorporates edge information is integrated into Backbone to expand the feature extraction receptive field and facilitate the learning of long-distance dependency. The BERT model is then used to encode conditional information, which is integrated into the backbone via the ELAN layer to assist the training and inference processes. Finally, an improved MPDIoU is applied to increase detection accuracy while increasing flexibility. The experimental results show that the modification enhances the network depth and reduces the number of parameters from 4M to 2.85M, while improving the mean average accuracy (mAP) by 3.1% over the baseline approach. The study's findings can help in crop object detection. The chilli pepper flower dataset: https://drive.google.com/file/d/1cKNie_iAzx-K4iPLQRVdyiOKV1d9zHrF/view?usp=drive_link The source code is available in https://drive.google.com/drive/folders/1ubNnKu7PWYAdUXvbs4Z2OBAVcSAQ3WLd?usp=drive_link .
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.