Plant Methods最新文献

筛选
英文 中文
Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data. RGB、高光谱和叶绿素荧光成像数据的自动图像注册。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-17 DOI: 10.1186/s13007-024-01296-y
Hans Lukas Bethge, Inga Weisheit, Mauritz Sandro Dortmund, Timm Landes, Miroslav Zabic, Marcus Linde, Thomas Debener, Dag Heinemann
{"title":"Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data.","authors":"Hans Lukas Bethge, Inga Weisheit, Mauritz Sandro Dortmund, Timm Landes, Miroslav Zabic, Marcus Linde, Thomas Debener, Dag Heinemann","doi":"10.1186/s13007-024-01296-y","DOIUrl":"10.1186/s13007-024-01296-y","url":null,"abstract":"<p><strong>Background: </strong>The early and specific detection of abiotic and biotic stresses, particularly their combinations, is a major challenge for maintaining and increasing plant productivity in sustainable agriculture under changing environmental conditions. Optical imaging techniques enable cost-efficient and non-destructive quantification of plant stress states. Monomodal detection of certain stressors is usually based on non-specific/indirect features and therefore is commonly limited in their cross-specificity to other stressors. The fusion of multi-domain sensor systems can provide more potentially discriminative features for machine learning models and potentially provide synergistic information to increase cross-specificity in plant disease detection when image data are fused at the pixel level.</p><p><strong>Results: </strong>In this study, we demonstrate successful multi-modal image registration of RGB, hyperspectral (HSI) and chlorophyll fluorescence (ChlF) kinetics data at the pixel level for high-throughput phenotyping of A. thaliana grown in Multi-well plates and an assay with detached leaf discs of Rosa × hybrida inoculated with the black spot disease-inducing fungus Diplocarpon rosae. Here, we showcase the effects of (i) selection of reference image selection, (ii) different registrations methods and (iii) frame selection on the performance of image registration via affine transform. In addition, we developed a combined approach for registration methods through NCC-based selection for each file, resulting in a robust and accurate approach that sacrifices computational time. Since image data encompass multiple objects, the initial coarse image registration using a global transformation matrix exhibited heterogeneity across different image regions. By employing an additional fine registration on the object-separated image data, we achieved a high overlap ratio. Specifically, for the A. thaliana test set, the overlap ratios (OR<sub>Convex</sub>) were 98.0 ± 2.3% for RGB-to-ChlF and 96.6 ± 4.2% for HSI-to-ChlF. For the Rosa × hybrida test set, the values were 98.9 ± 0.5% for RGB-to-ChlF and 98.3 ± 1.3% for HSI-to-ChlF.</p><p><strong>Conclusion: </strong>The presented multi-modal imaging pipeline enables high-throughput, high-dimensional phenotyping of different plant species with respect to various biotic or abiotic stressors. This paves the way for in-depth studies investigating the correlative relationships of the multi-domain data or the performance enhancement of machine learning models via multi modal image fusion.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"175"},"PeriodicalIF":4.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method. 基于组织培养方法建立 Peucedanum Praeruptorum dunn 的胼胝体诱导和小植株再生系统。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-16 DOI: 10.1186/s13007-024-01300-5
Haoyu Pan, Ranran Liao, Yingyu Zhang, Muhammad Arif, Yuxin Zhang, Shuai Zhang, Yuanyuan Wang, Pengcheng Zhao, Zaigui Wang, Bangxing Han, Cheng Song
{"title":"Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method.","authors":"Haoyu Pan, Ranran Liao, Yingyu Zhang, Muhammad Arif, Yuxin Zhang, Shuai Zhang, Yuanyuan Wang, Pengcheng Zhao, Zaigui Wang, Bangxing Han, Cheng Song","doi":"10.1186/s13007-024-01300-5","DOIUrl":"10.1186/s13007-024-01300-5","url":null,"abstract":"<p><strong>Background: </strong>Peucedanum praeruptorum Dunn has typical stacked umbels and medicinal value; however, the lack of an effective tissue culture system for P. praeruptorum has limited the large-scale propagation of its seedlings.</p><p><strong>Results: </strong>We systematically established an in vitro regeneration system for P. praeruptorum using young leaves and stems as explants. Tissue culture plantlets were successfully obtained within 123 and 90 d of somatic embryogenesis and organogenesis, respectively. Combined plant growth regulators (PGRs) were optimized to promote efficient plant regeneration at each stage of the culture process. Specifically, embryogenic callus induction was superior in Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 6-benzyladenine (BA) and 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). For somatic embryonic development, the highest differentiation rates were achieved using BA, 2,4-D, and 6-furfuryl aminopurine (6-KT). Induction of organogenesis resulted in the highest differentiation rates and proliferation coefficients of buds in MS medium supplemented with BA and α-naphthaleneacetic acid (NAA). Moreover, regeneration of P. praeruptorum seedlings was achieved by adjusting the BA and indole-3-butyric acid (IBA) concentrations in 1/2 MS medium.</p><p><strong>Conclusion: </strong>Our results provide a technical system for the rapid propagation of P. praeruptorum, which can facilitate germplasm improvement, resource conservation, and further genetic transformation of Peucedanum species.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"174"},"PeriodicalIF":4.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early detection of verticillium wilt in eggplant leaves by fusing five image channels: a deep learning approach. 通过融合五个图像通道早期检测茄子叶片的茄枯萎病:一种深度学习方法。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-15 DOI: 10.1186/s13007-024-01291-3
Youwei Zhang, Dongfang Zhang, Yunfei Zhang, Fengqing Cheng, Xuming Zhao, Min Wang, Xiaofei Fan
{"title":"Early detection of verticillium wilt in eggplant leaves by fusing five image channels: a deep learning approach.","authors":"Youwei Zhang, Dongfang Zhang, Yunfei Zhang, Fengqing Cheng, Xuming Zhao, Min Wang, Xiaofei Fan","doi":"10.1186/s13007-024-01291-3","DOIUrl":"10.1186/s13007-024-01291-3","url":null,"abstract":"<p><strong>Background: </strong>As one of the world's most important vegetable crops, eggplant production is often severely affected by verticillium wilt, leading to significant declines in yield and quality. Traditional multispectral disease-imaging equipment is expensive and complicated to operate. Low-cost multispectral devices cannot capture images and cover less information. The traditional approach to early disease diagnosis involves using multispectral disease-imaging equipment in conjunction with machine learning technology. However, this approach has significant limitations in early disease diagnosis, including challenges such as high costs, complex operation, and low model performance.</p><p><strong>Results: </strong>The aim of this study was to combine low-cost multispectral cameras with deep learning technology to detect early stage Verticillium wilt in eggplant effectively. Using the Manual FS-3200T-10GE-NNC multispectral camera to perform multispectral imaging of the leaves of eggplant seedlings at the early infection stage, information fusion was performed on the collected multispectral images, and a five-channel image information fusion model was established. Image information fusion technology was combined with deep learning technology, among which the VGG16-triplet attention model performed the best, achieving a precision of 86.73% on the test set. Model validation on 48- and 72-hour data reached a precision of 75% and 82%, respectively, achieving an early diagnosis of Verticillium wilt. This highlighted the potential of multispectral cameras for early disease detection.</p><p><strong>Conclusions: </strong>In this study, we successfully developed a method for the non-destructive detection of the early stages of eggplant wilt disease by combining multispectral imaging technology with deep learning algorithms. While ensuring high accuracy, this method significantly reduces the cost of experimental equipment. The application of this method can reduce the cost of agricultural equipment and provide a scientific basis for agricultural production practices, helping to reduce losses caused by diseases.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"173"},"PeriodicalIF":4.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BerryPortraits: Phenotyping Of Ripening Traits cranberry (Vaccinium macrocarpon Ait.) with YOLOv8. BerryPortraits:利用 YOLOv8 对蔓越莓(Vaccinium macrocarpon Ait.)
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-13 DOI: 10.1186/s13007-024-01285-1
Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M Sideli, Christopher F Strock, Craig T Beil, Moira J Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa
{"title":"BerryPortraits: Phenotyping Of Ripening Traits cranberry (Vaccinium macrocarpon Ait.) with YOLOv8.","authors":"Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M Sideli, Christopher F Strock, Craig T Beil, Moira J Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa","doi":"10.1186/s13007-024-01285-1","DOIUrl":"10.1186/s13007-024-01285-1","url":null,"abstract":"<p><p>BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"172"},"PeriodicalIF":4.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing hyperspectral imaging techniques for root systems: a new pipeline for macro- and microscale image acquisition and classification. 推进根系的高光谱成像技术:宏观和微观图像采集与分类的新管道。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-11 DOI: 10.1186/s13007-024-01297-x
Corine Faehn, Grzegorz Konert, Markku Keinänen, Katja Karppinen, Kirsten Krause
{"title":"Advancing hyperspectral imaging techniques for root systems: a new pipeline for macro- and microscale image acquisition and classification.","authors":"Corine Faehn, Grzegorz Konert, Markku Keinänen, Katja Karppinen, Kirsten Krause","doi":"10.1186/s13007-024-01297-x","DOIUrl":"10.1186/s13007-024-01297-x","url":null,"abstract":"<p><strong>Background: </strong>Understanding the environmental impacts on root growth and root health is essential for effective agricultural and environmental management. Hyperspectral imaging (HSI) technology provides a non-destructive method for detailed analysis and monitoring of plant tissues and organ development, but unfortunately examples for its application to root systems and the root-soil interface are very scarce. There is also a notable lack of standardized guidelines for image acquisition and data analysis pipelines.</p><p><strong>Methods: </strong>This study investigated HSI techniques for analyzing rhizobox-grown root systems across various imaging configurations, from the macro- to micro-scale, using the imec VNIR SNAPSCAN camera. Focusing on three graminoid species with different root architectures allowed us to evaluate the influence of key image acquisition parameters and data processing techniques on the differentiation of root, soil, and root-soil interface/rhizosheath spectral signatures. We compared two image classification methods, Spectral Angle Mapper (SAM) and K-Means clustering, and two machine learning approaches, Random Forest (RF) and Support Vector Machine (SVM), to assess their efficiency in automating root system image classification.</p><p><strong>Results: </strong>Our study demonstrated that training a RF model using SAM classifications, coupled with wavelength reduction using the second derivative spectra with Savitzky-Golay (SG) smoothing, provided reliable classification between root, soil, and the root-soil interface, achieving 88-91% accuracy across all configurations and scales. Although the root-soil interface was not clearly resolved, it helped to improve the distinction between root and soil classes. This approach effectively highlighted spectral differences resulting from the different configurations, image acquisition settings, and among the three species. Utilizing this classification method can facilitate the monitoring of root biomass and future work investigating root adaptations to harsh environmental conditions.</p><p><strong>Conclusions: </strong>Our study addressed the key challenges in HSI acquisition and data processing for root system analysis and lays the groundwork for further exploration of VNIR HSI application across various scales of root system studies. This work provides a full data analysis pipeline that can be utilized as an online Python-based tool for the semi-automated analysis of root-soil HSI data.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"171"},"PeriodicalIF":4.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SYMPATHIQUE: image-based tracking of symptoms and monitoring of pathogenesis to decompose quantitative disease resistance in the field. SYMPATHIQUE:基于图像的症状跟踪和发病监测,以分解田间的定量抗病性。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-10 DOI: 10.1186/s13007-024-01290-4
Jonas Anderegg, Radek Zenkl, Norbert Kirchgessner, Andreas Hund, Achim Walter, Bruce A McDonald
{"title":"SYMPATHIQUE: image-based tracking of symptoms and monitoring of pathogenesis to decompose quantitative disease resistance in the field.","authors":"Jonas Anderegg, Radek Zenkl, Norbert Kirchgessner, Andreas Hund, Achim Walter, Bruce A McDonald","doi":"10.1186/s13007-024-01290-4","DOIUrl":"10.1186/s13007-024-01290-4","url":null,"abstract":"<p><strong>Background: </strong>Quantitative disease resistance (QR) is a complex, dynamic trait that is most reliably quantified in field-grown crops. Traditional disease assessments offer limited potential to disentangle the contributions of different components to overall QR at critical crop developmental stages. Yet, a better functional understanding of QR could greatly support a more targeted, knowledge-based selection for QR and improve predictions of seasonal epidemics. Image-based approaches together with advanced image processing methodologies recently emerged as valuable tools to standardize relevant disease assessments, increase measurement throughput, and describe diseases along multiple dimensions.</p><p><strong>Results: </strong>We present a simple, affordable, and easy-to-operate imaging set-up and imaging procedure for in-field acquisition of wheat leaf image sequences. The development of Septoria tritici blotch and leaf rusts was monitored over time via robust methods for symptom detection and segmentation, spatial alignment of images, symptom tracking, and leaf- and symptom characterization. The average accuracy of the spatial alignment of images in a time series was approximately 5 pixels (~ 0.15 mm). Leaf-level symptom counts as well as individual symptom property measurements revealed stable patterns over time that were generally in excellent agreement with visual impressions. This provided strong evidence for the robustness of the methodology to variability typically inherent in field data. Contrasting patterns in the number of lesions resulting from separate infection events and lesion expansion dynamics were observed across wheat genotypes. The number of separate infection events and average lesion size contributed to different degrees to overall disease intensity, possibly indicating distinct and complementary mechanisms of QR.</p><p><strong>Conclusions: </strong>The proposed methodology enables rapid, non-destructive, and reproducible measurement of several key epidemiological parameters under field conditions. Such data can support decomposition and functional understanding of QR as well as the parameterization, fine-tuning, and validation of epidemiological models. Details of pathogenesis can translate into specific symptom phenotypes resolvable using time series of high-resolution RGB images, which may improve biological understanding of plant-pathogen interactions as well as interactions in disease complexes.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"170"},"PeriodicalIF":4.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CT image segmentation of foxtail millet seeds based on semantic segmentation model VGG16-UNet. 基于语义分割模型 VGG16-UNet 的狐尾黍种子 CT 图像分割。
IF 5.4 2区 生物学
Plant Methods Pub Date : 2024-11-07 DOI: 10.1186/s13007-024-01288-y
Yuyuan Miao, Rongxia Wang, Zejun Jing, Kun Wang, Meixia Tan, Fuzhong Li, Wuping Zhang, Jiwan Han, Yuanhuai Han
{"title":"CT image segmentation of foxtail millet seeds based on semantic segmentation model VGG16-UNet.","authors":"Yuyuan Miao, Rongxia Wang, Zejun Jing, Kun Wang, Meixia Tan, Fuzhong Li, Wuping Zhang, Jiwan Han, Yuanhuai Han","doi":"10.1186/s13007-024-01288-y","DOIUrl":"10.1186/s13007-024-01288-y","url":null,"abstract":"<p><p>Foxtail millet is an important minor cereal crop rich in nutrients. Due to the small size of its seeds, there is little information on the diversity of its seed structure among germplasms, limiting the identification of genes controlling seed development and germination. This paper utilized X-ray computed tomography (CT) scanning technology and deep learning models to reveal the microstructure of foxtail millet seeds, gaining insights into their internal features, distribution, and composition. A total of 100 foxtail millet varieties were scanned with X-ray computed tomography to obtain 3D reconstruction images and slices. Pre-processing steps were adopted to improve image segmentation accuracy, including noise reduction, rotation, contrast enhancement, and brightness enhancement. The experiment revealed that traditional OpenCV image processing methods failed to achieve precise segmentation, whereas deep learning models exhibited outstanding performance in segmenting seed CT slice images. We compared UNet, PSPNet, and DeepLabV3 models, selected different backbones and optimizers based on the dataset, and continuously adjusted learning rates and maximum training epochs to train the models. Results demonstrated that VGG16-UNet achieved an accuracy of 99.19% on the foxtail millet seed CT slice image dataset, outperforming PSPNet and DeepLabV3 models. Compared to ResNet-UNet, VGG16-UNet shows an improvement of approximately 3.18% in accuracy, demonstrating superior performance in accurately segmenting the inner glume, outer glume, embryo, and endosperm under various adhesion conditions. Accurate segmentation of foxtail millet CT images enables analysis of embryo size, endosperm size, and glume thickness, which impact germination, growth, and nutrition. This study fills a gap in small grain structure research, offering insights to optimize agriculture and molecular breeding for improved yield and quality.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"169"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating dynamic high-throughput phenotyping and genetic analysis to monitor growth variation in foxtail millet. 整合动态高通量表型和遗传分析,监测狐尾黍的生长变异。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-05 DOI: 10.1186/s13007-024-01295-z
Zhenyu Wang, Jiongyu Hao, Xiaofan Shi, Qiaoqiao Wang, Wuping Zhang, Fuzhong Li, Luis A J Mur, Yuanhuai Han, Siyu Hou, Jiwan Han, Zhaoxia Sun
{"title":"Integrating dynamic high-throughput phenotyping and genetic analysis to monitor growth variation in foxtail millet.","authors":"Zhenyu Wang, Jiongyu Hao, Xiaofan Shi, Qiaoqiao Wang, Wuping Zhang, Fuzhong Li, Luis A J Mur, Yuanhuai Han, Siyu Hou, Jiwan Han, Zhaoxia Sun","doi":"10.1186/s13007-024-01295-z","DOIUrl":"10.1186/s13007-024-01295-z","url":null,"abstract":"<p><strong>Background: </strong>Foxtail millet [Setaria italica (L.) Beauv] is a C<sub>4</sub> graminoid crop cultivated mainly in the arid and semiarid regions of China for more than 7000 years. Its grain highly nutritious and is rich in starch, protein, essential vitamins such as carotenoids, folate, and minerals. To expand the utilisation of foxtail millet, efficient and precise methods for dynamic phenotyping of its growth stages are needed. Traditional foxtail millet monitoring methods have high labour costs and are inefficient and inaccurate, impeding the precise evaluation of foxtail millet genotypic variation.</p><p><strong>Results: </strong>This study introduces a high-throughput imaging system (HIS) with advanced image processing techniques to enhance monitoring efficiency and data quality. The HIS can accurately extract a range of key growth feature parameters, such as plant height (PH), convex hull area (CHA), side projected area (SPA) and colour distribution, from foxtail millet images. Compared with traditional manual measurements, this HIS improved data quality and phenotyping of the key foxtail millet growth traits. High-throughput phenotyping combined with a genome-wide association study (GWAS) revealed genetic loci associated with dynamic growth traits, particularly plant height (PH), in foxtail millet. The loci were linked to genes involved in the gibberellic acid (GA) synthesis pathway related to PH.</p><p><strong>Conclusion: </strong>The HIS developed in this study enables the efficient and dynamic monitoring of foxtail millet phenotypic traits. It significantly improves the quality of data obtained for phenotyping key growth traits. The integration of high-throughput phenotyping with GWAS provides new insights into the genetic underpinnings of dynamic growth traits, particularly plant height, by identifying associated genetic loci in the GA synthesis pathway. This methodological advancement opens new avenues for the precise phenotyping and exploration of genetic resources in foxtail millet, potentially enhancing its utilisation.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"168"},"PeriodicalIF":4.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing automated pear picking using Mamba architecture. 使用 Mamba 架构彻底改变梨的自动采摘。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-11-04 DOI: 10.1186/s13007-024-01287-z
Peirui Zhao, Weiwei Cai, Wenhua Zhou, Na Li
{"title":"Revolutionizing automated pear picking using Mamba architecture.","authors":"Peirui Zhao, Weiwei Cai, Wenhua Zhou, Na Li","doi":"10.1186/s13007-024-01287-z","DOIUrl":"10.1186/s13007-024-01287-z","url":null,"abstract":"<p><p>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"167"},"PeriodicalIF":4.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of a rapid, sensitive, and high throughput molecular sensor to measure canola protoplast respiratory metabolism as a means of screening nanomaterial cytotoxicity. 优化测量油菜原生质体呼吸代谢的快速、灵敏和高通量分子传感器,作为筛选纳米材料细胞毒性的一种手段。
IF 4.7 2区 生物学
Plant Methods Pub Date : 2024-10-30 DOI: 10.1186/s13007-024-01289-x
Zhila Osmani, Muhammad Amirul Islam, Feng Wang, Sabrina Rodrigues Meira, Marianna Kulka
{"title":"Optimization of a rapid, sensitive, and high throughput molecular sensor to measure canola protoplast respiratory metabolism as a means of screening nanomaterial cytotoxicity.","authors":"Zhila Osmani, Muhammad Amirul Islam, Feng Wang, Sabrina Rodrigues Meira, Marianna Kulka","doi":"10.1186/s13007-024-01289-x","DOIUrl":"10.1186/s13007-024-01289-x","url":null,"abstract":"<p><p>Nanomaterial-mediated plant genetic engineering holds promise for developing new crop cultivars but can be hindered by nanomaterial toxicity to protoplasts. We present a fast, high-throughput method for assessing protoplast viability using resazurin, a non-toxic dye converted to highly fluorescent resorufin during respiration. Protoplasts isolated from hypocotyl canola (Brassica napus L.) were evaluated at varying temperatures (4, 10, 20, 30 ˚C) and time intervals (1-24 h). Optimal conditions for detecting protoplast viability were identified as 20,000 cells incubated with 40 µM resazurin at room temperature for 3 h. The assay was applied to evaluate the cytotoxicity of silver nanospheres, silica nanospheres, cholesteryl-butyrate nanoemulsion, and lipid nanoparticles. The cholesteryl-butyrate nanoemulsion and lipid nanoparticles exhibited toxicity across all tested concentrations (5-500 ng/ml), except at 5 ng/ml. Silver nanospheres were toxic across all tested concentrations (5-500 ng/ml) and sizes (20-100 nm), except for the larger size (100 nm) at 5 ng/ml. Silica nanospheres showed no toxicity at 5 ng/ml across all tested sizes (12-230 nm). Our results highlight that nanoparticle size and concentration significantly impact protoplast toxicity. Overall, the results showed that the resazurin assay is a precise, rapid, and scalable tool for screening nanomaterial cytotoxicity, enabling more accurate evaluations before using nanomaterials in genetic engineering.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"165"},"PeriodicalIF":4.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信