{"title":"Machine Learning-Based identification of resistance genes associated with sunflower broomrape.","authors":"Yingxue Che, Congzi Zhang, Jixiang Xing, Qilemuge Xi, Ying Shao, Lingmin Zhao, Shuchun Guo, Yongchun Zuo","doi":"10.1186/s13007-025-01383-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sunflowers (Helianthus annuus L.), a vital oil crop, are facing a severe challenge from broomrape (Orobanche cumana), a parasitic plant that seriously jeopardizes the growth and development of sunflowers, limits global production and leads to substantial economic losses, which urges the development of resistant sunflower varieties.</p><p><strong>Results: </strong>This study aims to identify resistance genes from a comprehensive transcriptomic profile of 103 sunflower varieties based on gene expression data and then constructs predictive models with the key resistant genes. The least absolute shrinkage and selection operator (LASSO) regression and random forest feature importance ranking method were used to identify resistance genes. These genes were considered as biomarkers in constructing machine learning models with Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Logistic Regression (LR), and Gaussian Naive Bayes (GaussianNB). The SVM model constructed with the 24 key genes selected by the LASSO method demonstrated high classification accuracy (0.9514) and a robust AUC value (0.9865), effectively distinguishing between resistant and susceptible varieties based on gene expression data. Furthermore, we discovered a correlation between key genes and differential metabolites, particularly jasmonic acid (JA).</p><p><strong>Conclusion: </strong>Our study highlights a novel perspective on screening sunflower varieties for broomrape resistance, which is anticipated to guide future biological research and breeding strategies.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"62"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01383-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sunflowers (Helianthus annuus L.), a vital oil crop, are facing a severe challenge from broomrape (Orobanche cumana), a parasitic plant that seriously jeopardizes the growth and development of sunflowers, limits global production and leads to substantial economic losses, which urges the development of resistant sunflower varieties.
Results: This study aims to identify resistance genes from a comprehensive transcriptomic profile of 103 sunflower varieties based on gene expression data and then constructs predictive models with the key resistant genes. The least absolute shrinkage and selection operator (LASSO) regression and random forest feature importance ranking method were used to identify resistance genes. These genes were considered as biomarkers in constructing machine learning models with Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Logistic Regression (LR), and Gaussian Naive Bayes (GaussianNB). The SVM model constructed with the 24 key genes selected by the LASSO method demonstrated high classification accuracy (0.9514) and a robust AUC value (0.9865), effectively distinguishing between resistant and susceptible varieties based on gene expression data. Furthermore, we discovered a correlation between key genes and differential metabolites, particularly jasmonic acid (JA).
Conclusion: Our study highlights a novel perspective on screening sunflower varieties for broomrape resistance, which is anticipated to guide future biological research and breeding strategies.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.