Jinsheng Wang, Tao Wang, Qin Xu, Lu Gao, Guosong Gu, Liangquan Jia, Chong Yao
{"title":"RP-DETR:端到端水稻害虫检测使用变压器。","authors":"Jinsheng Wang, Tao Wang, Qin Xu, Lu Gao, Guosong Gu, Liangquan Jia, Chong Yao","doi":"10.1186/s13007-025-01381-w","DOIUrl":null,"url":null,"abstract":"<p><p>Pest infestations in rice crops greatly affect yield and quality, making early detection essential. As most rice pests affect leaves and rhizomes, visual inspection of rice for pests is becoming increasingly important. In precision agriculture, fast and accurate automatic pest identification is essential. To tackle this issue, multiple models utilizing computer vision and deep learning have been applied. Owing to its high efficiency, deep learning is now the favored approach for detecting plant pests. In this regard, the paper introduces an effective rice pest detection framework utilizing the Transformer architecture, designed to capture long-range features. The paper enhances the original model by adding the self-developed RepPConv-block to reduce the problem of information redundancy in feature extraction in the model backbone and to a certain extent reduce the model parameters. The original model's CCFM structure is enhanced by integrating the Gold-YOLO neck, improving its ability to fuse multi-scale features. Additionally, the MPDIoU-based loss function enhances the model's detection performance. Using the self-constructed high-quality rice pest dataset, the model achieves higher identification accuracy while reducing the number of parameters. The proposed RP18-DETR and RP34-DETR models reduce parameters by 16.5% and 25.8%, respectively, compared to the original RT18-DETR and RT34-DETR models. With a threshold of 0.5, the average accuracy calculated is 1.2% higher for RP18-DETR than for RT18-DETR.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"63"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084966/pdf/","citationCount":"0","resultStr":"{\"title\":\"RP-DETR: end-to-end rice pests detection using a transformer.\",\"authors\":\"Jinsheng Wang, Tao Wang, Qin Xu, Lu Gao, Guosong Gu, Liangquan Jia, Chong Yao\",\"doi\":\"10.1186/s13007-025-01381-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pest infestations in rice crops greatly affect yield and quality, making early detection essential. As most rice pests affect leaves and rhizomes, visual inspection of rice for pests is becoming increasingly important. In precision agriculture, fast and accurate automatic pest identification is essential. To tackle this issue, multiple models utilizing computer vision and deep learning have been applied. Owing to its high efficiency, deep learning is now the favored approach for detecting plant pests. In this regard, the paper introduces an effective rice pest detection framework utilizing the Transformer architecture, designed to capture long-range features. The paper enhances the original model by adding the self-developed RepPConv-block to reduce the problem of information redundancy in feature extraction in the model backbone and to a certain extent reduce the model parameters. The original model's CCFM structure is enhanced by integrating the Gold-YOLO neck, improving its ability to fuse multi-scale features. Additionally, the MPDIoU-based loss function enhances the model's detection performance. Using the self-constructed high-quality rice pest dataset, the model achieves higher identification accuracy while reducing the number of parameters. The proposed RP18-DETR and RP34-DETR models reduce parameters by 16.5% and 25.8%, respectively, compared to the original RT18-DETR and RT34-DETR models. With a threshold of 0.5, the average accuracy calculated is 1.2% higher for RP18-DETR than for RT18-DETR.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"63\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01381-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01381-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
RP-DETR: end-to-end rice pests detection using a transformer.
Pest infestations in rice crops greatly affect yield and quality, making early detection essential. As most rice pests affect leaves and rhizomes, visual inspection of rice for pests is becoming increasingly important. In precision agriculture, fast and accurate automatic pest identification is essential. To tackle this issue, multiple models utilizing computer vision and deep learning have been applied. Owing to its high efficiency, deep learning is now the favored approach for detecting plant pests. In this regard, the paper introduces an effective rice pest detection framework utilizing the Transformer architecture, designed to capture long-range features. The paper enhances the original model by adding the self-developed RepPConv-block to reduce the problem of information redundancy in feature extraction in the model backbone and to a certain extent reduce the model parameters. The original model's CCFM structure is enhanced by integrating the Gold-YOLO neck, improving its ability to fuse multi-scale features. Additionally, the MPDIoU-based loss function enhances the model's detection performance. Using the self-constructed high-quality rice pest dataset, the model achieves higher identification accuracy while reducing the number of parameters. The proposed RP18-DETR and RP34-DETR models reduce parameters by 16.5% and 25.8%, respectively, compared to the original RT18-DETR and RT34-DETR models. With a threshold of 0.5, the average accuracy calculated is 1.2% higher for RP18-DETR than for RT18-DETR.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.