{"title":"基于非生物因子和修正的coserat杆理论的椰子树建模。","authors":"Sakthiprasad Kuttankulangara Manoharan, Rajesh Kannan Megalingam","doi":"10.1186/s13007-025-01379-4","DOIUrl":null,"url":null,"abstract":"<p><p>The biomechanics of growing trees, particularly coconut trees, are intricate due to various abiotic factors such as sunlight, wind, gravitropism, and cultivation practices. Existing structural growth models fail to capture the unique characteristics of coconut trees, which lack branches and have large crown leaves. This research introduces a novel coconut tree modeling approach, integrating abiotic factors and modified Cosserat rod theory. Factors like sunlight availability, wind speed, cultivation practices, and gravitropism influence coconut tree growth rates. The model encompasses both primary and secondary growth processes. Primary growth is influenced by gravitropism, sunlight availability, and wind effects, while secondary growth is determined by variations in trunk diameter. Additionally, the model incorporates the diameter at breast height to accommodate cultivation practice variations. Comparisons between the proposed model, classical rod theory, and biomechanics growth models reveal that the proposed model aligns more closely with real-time data on spatial and temporal growth characteristics. This research marks the first attempt to model coconut tree growth considering abiotic factors comprehensively. In summary, this study presents a pioneering coconut tree growth model that integrates abiotic factors and modified Cosserat rod theory. By considering unique features of coconut trees and environmental influences, the model offers more accurate predictions compared to existing approaches, enhancing our understanding of coconut tree biomechanics and growth patterns. Coconut tree modeling has diverse applications in precision agriculture, automated harvesting, tree health monitoring, climate change analysis, urban planning, and the biomass industry, helping optimize yield, resource management, and sustainability. It also plays a crucial role in genetic research, disaster preparedness, and risk assessment, enabling advancements in robotics, environmental conservation, and industrial applications for improved productivity and resilience.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"64"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coconut tree modeling based on abiotic factors and modified cosserat rod theory.\",\"authors\":\"Sakthiprasad Kuttankulangara Manoharan, Rajesh Kannan Megalingam\",\"doi\":\"10.1186/s13007-025-01379-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biomechanics of growing trees, particularly coconut trees, are intricate due to various abiotic factors such as sunlight, wind, gravitropism, and cultivation practices. Existing structural growth models fail to capture the unique characteristics of coconut trees, which lack branches and have large crown leaves. This research introduces a novel coconut tree modeling approach, integrating abiotic factors and modified Cosserat rod theory. Factors like sunlight availability, wind speed, cultivation practices, and gravitropism influence coconut tree growth rates. The model encompasses both primary and secondary growth processes. Primary growth is influenced by gravitropism, sunlight availability, and wind effects, while secondary growth is determined by variations in trunk diameter. Additionally, the model incorporates the diameter at breast height to accommodate cultivation practice variations. Comparisons between the proposed model, classical rod theory, and biomechanics growth models reveal that the proposed model aligns more closely with real-time data on spatial and temporal growth characteristics. This research marks the first attempt to model coconut tree growth considering abiotic factors comprehensively. In summary, this study presents a pioneering coconut tree growth model that integrates abiotic factors and modified Cosserat rod theory. By considering unique features of coconut trees and environmental influences, the model offers more accurate predictions compared to existing approaches, enhancing our understanding of coconut tree biomechanics and growth patterns. Coconut tree modeling has diverse applications in precision agriculture, automated harvesting, tree health monitoring, climate change analysis, urban planning, and the biomass industry, helping optimize yield, resource management, and sustainability. It also plays a crucial role in genetic research, disaster preparedness, and risk assessment, enabling advancements in robotics, environmental conservation, and industrial applications for improved productivity and resilience.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"64\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01379-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01379-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Coconut tree modeling based on abiotic factors and modified cosserat rod theory.
The biomechanics of growing trees, particularly coconut trees, are intricate due to various abiotic factors such as sunlight, wind, gravitropism, and cultivation practices. Existing structural growth models fail to capture the unique characteristics of coconut trees, which lack branches and have large crown leaves. This research introduces a novel coconut tree modeling approach, integrating abiotic factors and modified Cosserat rod theory. Factors like sunlight availability, wind speed, cultivation practices, and gravitropism influence coconut tree growth rates. The model encompasses both primary and secondary growth processes. Primary growth is influenced by gravitropism, sunlight availability, and wind effects, while secondary growth is determined by variations in trunk diameter. Additionally, the model incorporates the diameter at breast height to accommodate cultivation practice variations. Comparisons between the proposed model, classical rod theory, and biomechanics growth models reveal that the proposed model aligns more closely with real-time data on spatial and temporal growth characteristics. This research marks the first attempt to model coconut tree growth considering abiotic factors comprehensively. In summary, this study presents a pioneering coconut tree growth model that integrates abiotic factors and modified Cosserat rod theory. By considering unique features of coconut trees and environmental influences, the model offers more accurate predictions compared to existing approaches, enhancing our understanding of coconut tree biomechanics and growth patterns. Coconut tree modeling has diverse applications in precision agriculture, automated harvesting, tree health monitoring, climate change analysis, urban planning, and the biomass industry, helping optimize yield, resource management, and sustainability. It also plays a crucial role in genetic research, disaster preparedness, and risk assessment, enabling advancements in robotics, environmental conservation, and industrial applications for improved productivity and resilience.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.