一种先进的辣椒病虫害检测深度学习方法。

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xuewei Wang, Jun Liu, Qian Chen
{"title":"一种先进的辣椒病虫害检测深度学习方法。","authors":"Xuewei Wang, Jun Liu, Qian Chen","doi":"10.1186/s13007-025-01387-4","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the significant progress in deep learning-based object detection, existing models struggle to perform optimally in complex agricultural environments. To address these challenges, this study introduces YOLO-Pepper, an enhanced model designed specifically for greenhouse pepper disease and pest detection, overcoming three key obstacles: small target recognition, multi-scale feature extraction under occlusion, and real-time processing demands. Built upon YOLOv10n, YOLO-Pepper incorporates four major innovations: (1) an Adaptive Multi-Scale Feature Extraction (AMSFE) module that improves feature capture through multi-branch convolutions; (2) a Dynamic Feature Pyramid Network (DFPN) enabling context-aware feature fusion; (3) a specialized Small Detection Head (SDH) tailored for minute targets; and (4) an Inner-CIoU loss function that enhances localization accuracy by 18% compared to standard CIoU. Evaluated on a diverse dataset of 8046 annotated images, YOLO-Pepper achieves state-of-the-art performance, with 94.26% mAP@0.5 at 115.26 FPS, marking an 11.88 percentage point improvement over YOLOv10n (82.38% mAP@0.5) while maintaining a lightweight structure (2.51 M parameters, 5.15 MB model size) optimized for edge deployment. Comparative experiments highlight YOLO-Pepper's superiority over nine benchmark models, particularly in detecting small and occluded targets. By addressing computational inefficiencies and refining small object detection capabilities, YOLO-Pepper provides robust technical support for intelligent agricultural monitoring systems, making it a highly effective tool for early disease detection and integrated pest management in commercial greenhouse operations.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"70"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107738/pdf/","citationCount":"0","resultStr":"{\"title\":\"An advanced deep learning method for pepper diseases and pests detection.\",\"authors\":\"Xuewei Wang, Jun Liu, Qian Chen\",\"doi\":\"10.1186/s13007-025-01387-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the significant progress in deep learning-based object detection, existing models struggle to perform optimally in complex agricultural environments. To address these challenges, this study introduces YOLO-Pepper, an enhanced model designed specifically for greenhouse pepper disease and pest detection, overcoming three key obstacles: small target recognition, multi-scale feature extraction under occlusion, and real-time processing demands. Built upon YOLOv10n, YOLO-Pepper incorporates four major innovations: (1) an Adaptive Multi-Scale Feature Extraction (AMSFE) module that improves feature capture through multi-branch convolutions; (2) a Dynamic Feature Pyramid Network (DFPN) enabling context-aware feature fusion; (3) a specialized Small Detection Head (SDH) tailored for minute targets; and (4) an Inner-CIoU loss function that enhances localization accuracy by 18% compared to standard CIoU. Evaluated on a diverse dataset of 8046 annotated images, YOLO-Pepper achieves state-of-the-art performance, with 94.26% mAP@0.5 at 115.26 FPS, marking an 11.88 percentage point improvement over YOLOv10n (82.38% mAP@0.5) while maintaining a lightweight structure (2.51 M parameters, 5.15 MB model size) optimized for edge deployment. Comparative experiments highlight YOLO-Pepper's superiority over nine benchmark models, particularly in detecting small and occluded targets. By addressing computational inefficiencies and refining small object detection capabilities, YOLO-Pepper provides robust technical support for intelligent agricultural monitoring systems, making it a highly effective tool for early disease detection and integrated pest management in commercial greenhouse operations.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"70\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01387-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01387-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

尽管在基于深度学习的目标检测方面取得了重大进展,但现有模型在复杂的农业环境中难以达到最佳效果。为了解决这些问题,本研究引入了专为温室辣椒病虫害检测设计的增强模型YOLO-Pepper,克服了三个关键障碍:小目标识别、遮挡下的多尺度特征提取和实时处理需求。YOLO-Pepper以YOLOv10n为基础,采用了四大创新:(1)自适应多尺度特征提取(AMSFE)模块,通过多分支卷积改进特征捕获;(2)实现上下文感知特征融合的动态特征金字塔网络(DFPN);(3)为微小目标量身定制的专用小探测头(SDH);(4)内置CIoU损失函数,与标准CIoU相比,定位精度提高了18%。在8046张标注图像的不同数据集上进行评估,YOLO-Pepper达到了最先进的性能,在115.26 FPS下达到了94.26% mAP@0.5,比YOLOv10n (82.38% mAP@0.5)提高了11.88个百分点,同时保持了针对边缘部署优化的轻量级结构(2.51 M参数,5.15 MB模型大小)。对比实验突出了YOLO-Pepper优于9个基准模型,特别是在检测小目标和遮挡目标方面。通过解决计算效率低下和改进小物体检测能力,YOLO-Pepper为智能农业监测系统提供了强大的技术支持,使其成为商业温室操作中早期疾病检测和综合虫害管理的高效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An advanced deep learning method for pepper diseases and pests detection.

Despite the significant progress in deep learning-based object detection, existing models struggle to perform optimally in complex agricultural environments. To address these challenges, this study introduces YOLO-Pepper, an enhanced model designed specifically for greenhouse pepper disease and pest detection, overcoming three key obstacles: small target recognition, multi-scale feature extraction under occlusion, and real-time processing demands. Built upon YOLOv10n, YOLO-Pepper incorporates four major innovations: (1) an Adaptive Multi-Scale Feature Extraction (AMSFE) module that improves feature capture through multi-branch convolutions; (2) a Dynamic Feature Pyramid Network (DFPN) enabling context-aware feature fusion; (3) a specialized Small Detection Head (SDH) tailored for minute targets; and (4) an Inner-CIoU loss function that enhances localization accuracy by 18% compared to standard CIoU. Evaluated on a diverse dataset of 8046 annotated images, YOLO-Pepper achieves state-of-the-art performance, with 94.26% mAP@0.5 at 115.26 FPS, marking an 11.88 percentage point improvement over YOLOv10n (82.38% mAP@0.5) while maintaining a lightweight structure (2.51 M parameters, 5.15 MB model size) optimized for edge deployment. Comparative experiments highlight YOLO-Pepper's superiority over nine benchmark models, particularly in detecting small and occluded targets. By addressing computational inefficiencies and refining small object detection capabilities, YOLO-Pepper provides robust technical support for intelligent agricultural monitoring systems, making it a highly effective tool for early disease detection and integrated pest management in commercial greenhouse operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信