Alice Checcucci, Francesca Decorosi, Giulia Alfreducci, Roberto Natale, Agnese Bellabarba, Stefano Biricolti, Donatella Paffetti, Alessio Mengoni, Carlo Viti
{"title":"Phenotype microarray-based assessment of metabolic variability in plant protoplasts.","authors":"Alice Checcucci, Francesca Decorosi, Giulia Alfreducci, Roberto Natale, Agnese Bellabarba, Stefano Biricolti, Donatella Paffetti, Alessio Mengoni, Carlo Viti","doi":"10.1186/s13007-025-01378-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Productivity and fitness of cultivated plants are influenced by genetic heritage and environmental interactions, shaping certain phenotypes. Phenomics is the -omics methodology providing applicative approaches for the analysis of multidimensional phenotypic information, essential to understand and foresee the genetic potential of organisms relevant to agriculture. While plant phenotyping provides information at the whole organism level, cellular level phenotyping is crucial for identifying and dissecting the metabolic basis of different phenotypes and the effect of metabolic-related genetic modifications. Phenotype Microarray (PM) is a high-throughput technology developed by Biolog<sup>™</sup> for metabolic characterization studies at cellular level, which is based on colorimetric reactions to monitor cellular respiration under different conditions. Nowadays, PM is widely used for bacteria, fungi, and mammalian cells, but a procedure for plant cells characterization has not yet been developed, due to difficulties linked in identifying a suitable reporter of cell activities.</p><p><strong>Results: </strong>Here, we tested for the first time, PM technology on plant cells using protoplasts as a means of evaluating metabolic activity. Indeed, studying the metabolism of plant protoplasts can be a valuable method for predicting the inherent metabolic potential of an entire plant organism. Protoplasts are indeed valuable tools in plant research and biotechnology because they offer a simplified, isolated cellular system where researchers can focus on intracellular processes without interference from the cell wall. As a proof-of-principle, we used protoplasts of Solanum tuberosum L. as model system. Protoplasts were isolated from leaf tissue of in vitro-grown plants, purified and then diluted until desired concentration. Microplates were inoculated with protoplasts suspension and various markers of redox potential as indicators of cell activity were tested. After identifying the optimal conditions for PM testing, metabolic tests were extended to protoplasts from S. lycopersicum L., evaluating plant response to different NaCl concentrations and some of the toxic compounds present in pre-configured Biolog<sup>™</sup> microplates.</p><p><strong>Conclusions: </strong>The standardized high-throughput system developed was effective for the metabolic characterization of plant protoplasts. This method lays the foundation for plant cell metabolic phenotype studies enabling comparative studies at cellular level among cultivars, species, wild-type organisms, and genome-edited plants.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"58"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01378-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Productivity and fitness of cultivated plants are influenced by genetic heritage and environmental interactions, shaping certain phenotypes. Phenomics is the -omics methodology providing applicative approaches for the analysis of multidimensional phenotypic information, essential to understand and foresee the genetic potential of organisms relevant to agriculture. While plant phenotyping provides information at the whole organism level, cellular level phenotyping is crucial for identifying and dissecting the metabolic basis of different phenotypes and the effect of metabolic-related genetic modifications. Phenotype Microarray (PM) is a high-throughput technology developed by Biolog™ for metabolic characterization studies at cellular level, which is based on colorimetric reactions to monitor cellular respiration under different conditions. Nowadays, PM is widely used for bacteria, fungi, and mammalian cells, but a procedure for plant cells characterization has not yet been developed, due to difficulties linked in identifying a suitable reporter of cell activities.
Results: Here, we tested for the first time, PM technology on plant cells using protoplasts as a means of evaluating metabolic activity. Indeed, studying the metabolism of plant protoplasts can be a valuable method for predicting the inherent metabolic potential of an entire plant organism. Protoplasts are indeed valuable tools in plant research and biotechnology because they offer a simplified, isolated cellular system where researchers can focus on intracellular processes without interference from the cell wall. As a proof-of-principle, we used protoplasts of Solanum tuberosum L. as model system. Protoplasts were isolated from leaf tissue of in vitro-grown plants, purified and then diluted until desired concentration. Microplates were inoculated with protoplasts suspension and various markers of redox potential as indicators of cell activity were tested. After identifying the optimal conditions for PM testing, metabolic tests were extended to protoplasts from S. lycopersicum L., evaluating plant response to different NaCl concentrations and some of the toxic compounds present in pre-configured Biolog™ microplates.
Conclusions: The standardized high-throughput system developed was effective for the metabolic characterization of plant protoplasts. This method lays the foundation for plant cell metabolic phenotype studies enabling comparative studies at cellular level among cultivars, species, wild-type organisms, and genome-edited plants.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.