Zhe Li, Jinhu Mu, Yan Du, Xiao Liu, Lixia Yu, Jianing Ding, Jing Long, Jingmin Chen, Libin Zhou
{"title":"Advancing radiation-induced mutant screening through high-throughput technology: a preliminary evaluation of mutant screening in Arabidopsis thaliana.","authors":"Zhe Li, Jinhu Mu, Yan Du, Xiao Liu, Lixia Yu, Jianing Ding, Jing Long, Jingmin Chen, Libin Zhou","doi":"10.1186/s13007-025-01367-8","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying mutant traits is essential for improving crop yield, quality, and stress resistance in plant breeding. Historically, the efficiency of breeding has been constrained by throughput and accuracy. Recent significant advancements have been made through the development of automated, high-accuracy, and high-throughput equipment. However, challenges remain in the post-processing of large-scale image data and its practical application and evaluation in breeding. This study presents a comparative analysis of human and machine recognition, with validation of a randomly selected mutant at the physiological level performed on wild-type Arabidopsis thaliana and a candidate mutant of the M<sub>3</sub> generation, which was generated through mutagenesis with heavy ion beams (HIBs) and <sup>60</sup>Co-γ radiation. The mutant populations were subjected to image acquisition and automated screening using the High-throughput Plant Imaging System (HTPIS), generating approximately 10 GB of data (4,635 image datasets). We performed Principal Components Analysis (PCA), scatter matrix clustering, and Logistic Growth Curve (LGC) analyses, and compared these results with those obtained from traditional manual screening based on human visual assessment, and randomly selected #197 candidate mutants for validation in terms of growth and development, chlorophyll fluorescence, and subcellular structure. Our findings demonstrate that as the confidence interval level increases from 75 to 99.9%, the accuracy of machine-based mutant identification decreases from 1 to 0.446, while the false positive rate decreases from 0.817 to 0.118, and the false negative rate increases from 0 to 0.554. Nevertheless, machine-based screening remains more accurate and efficient than human assessment. This study evaluated and validated the efficiency (greater than 80%) of high-throughput techniques for screening mutants in complex populations of radiation-induced progeny, and presented a graphical data processing procedure for high-throughput screening of mutants, providing a basis for breeding techniques utilizing HIBs and γ-ray radiation, and offering innovative approaches and methodologies for radiation-induced breeding in the context of high-throughput big data.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"50"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01367-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying mutant traits is essential for improving crop yield, quality, and stress resistance in plant breeding. Historically, the efficiency of breeding has been constrained by throughput and accuracy. Recent significant advancements have been made through the development of automated, high-accuracy, and high-throughput equipment. However, challenges remain in the post-processing of large-scale image data and its practical application and evaluation in breeding. This study presents a comparative analysis of human and machine recognition, with validation of a randomly selected mutant at the physiological level performed on wild-type Arabidopsis thaliana and a candidate mutant of the M3 generation, which was generated through mutagenesis with heavy ion beams (HIBs) and 60Co-γ radiation. The mutant populations were subjected to image acquisition and automated screening using the High-throughput Plant Imaging System (HTPIS), generating approximately 10 GB of data (4,635 image datasets). We performed Principal Components Analysis (PCA), scatter matrix clustering, and Logistic Growth Curve (LGC) analyses, and compared these results with those obtained from traditional manual screening based on human visual assessment, and randomly selected #197 candidate mutants for validation in terms of growth and development, chlorophyll fluorescence, and subcellular structure. Our findings demonstrate that as the confidence interval level increases from 75 to 99.9%, the accuracy of machine-based mutant identification decreases from 1 to 0.446, while the false positive rate decreases from 0.817 to 0.118, and the false negative rate increases from 0 to 0.554. Nevertheless, machine-based screening remains more accurate and efficient than human assessment. This study evaluated and validated the efficiency (greater than 80%) of high-throughput techniques for screening mutants in complex populations of radiation-induced progeny, and presented a graphical data processing procedure for high-throughput screening of mutants, providing a basis for breeding techniques utilizing HIBs and γ-ray radiation, and offering innovative approaches and methodologies for radiation-induced breeding in the context of high-throughput big data.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.