Numerical Methods for Partial Differential Equations最新文献

筛选
英文 中文
A flux‐based HDG method 基于通量的 HDG 方法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-31 DOI: 10.1002/num.23117
Issei Oikawa
{"title":"A flux‐based HDG method","authors":"Issei Oikawa","doi":"10.1002/num.23117","DOIUrl":"https://doi.org/10.1002/num.23117","url":null,"abstract":"In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensions and investigations of space‐time generalized Riemann problems numerical schemes for linear systems of conservation laws with source terms 带源项线性守恒定律系统的时空广义黎曼问题数值方案的扩展与研究
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-31 DOI: 10.1002/num.23118
Rodolphe Turpault
{"title":"Extensions and investigations of space‐time generalized Riemann problems numerical schemes for linear systems of conservation laws with source terms","authors":"Rodolphe Turpault","doi":"10.1002/num.23118","DOIUrl":"https://doi.org/10.1002/num.23118","url":null,"abstract":"The space‐time generalized Riemann problems method allows to obtain numerical schemes of arbitrary high order that can be used with very large time steps for systems of linear hyperbolic conservation laws with source term. They have been introduced in Berthon et al. (J. Sci. Comput. 55 (2013), 268–308.) in 1D and on 2D unstructured meshes made of triangles. The objective of this article is to complement them in order to answer some important questions arising when they are involved. The formulation is described in detail on quadrangle meshes, the choice of approximation basis is discussed and Legendre polynomials are used in practical cases. The addition of a limiter to preserve certain properties without compromising accuracy is also considered. Finally, the asymptotic behavior of the scheme in the diffusion regime is studied.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A parareal exponential integrator finite element method for semilinear parabolic equations 半线性抛物方程的准指数积分有限元法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-29 DOI: 10.1002/num.23116
Jianguo Huang, Lili Ju, Yuejin Xu
{"title":"A parareal exponential integrator finite element method for semilinear parabolic equations","authors":"Jianguo Huang, Lili Ju, Yuejin Xu","doi":"10.1002/num.23116","DOIUrl":"https://doi.org/10.1002/num.23116","url":null,"abstract":"In this article, we present a parareal exponential finite element method, with the help of variational formulation and parareal framework, for solving semilinear parabolic equations in rectangular domains. The model equation is first discretized in space using the finite element method with continuous piecewise multilinear rectangular basis functions, producing the semi‐discrete system. We then discretize the temporal direction using the explicit exponential Runge–Kutta approach accompanied by the parareal framework, resulting in the fully‐discrete numerical scheme. To further improve computational speed, we design a fast solver for our method based on tensor product spectral decomposition and fast Fourier transform. Under certain regularity assumption, we successfully derive optimal error estimates for the proposed parallel‐based method with respect to ‐norm. Extensive numerical experiments in two and three dimensions are also carried out to validate the theoretical results and demonstrate the performance of our method.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation 二维多项反应-次扩散方程的 L1-ADI 方案收敛性分析
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-21 DOI: 10.1002/num.23115
Yubing Jiang, Hu Chen
{"title":"Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation","authors":"Yubing Jiang, Hu Chen","doi":"10.1002/num.23115","DOIUrl":"https://doi.org/10.1002/num.23115","url":null,"abstract":"In this paper, we consider the numerical approximation for a two‐dimensional multiterm reaction‐subdiffusion equation, where we adopt an alternating direction implicit (ADI) method combined with the L1 approximation for the multiterm time Caputo fractional derivatives of orders between 0 and 1. Stability and convergence of the full‐discrete L1‐ADI scheme are established. The final convergence in time direction is point‐wise, that is, at . Numerical results are given to confirm our theoretical results.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141117940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal error estimates of a decoupled finite element scheme for the unsteady inductionless MHD equations 非稳态无诱导多流体力学方程解耦有限元方案的最佳误差估计
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-15 DOI: 10.1002/num.23108
Xiaodi Zhang, Shitian Dong
{"title":"Optimal error estimates of a decoupled finite element scheme for the unsteady inductionless MHD equations","authors":"Xiaodi Zhang, Shitian Dong","doi":"10.1002/num.23108","DOIUrl":"https://doi.org/10.1002/num.23108","url":null,"abstract":"This article focuses on a new and optimal error analysis of a decoupled finite element scheme for the inductionless magnetohydrodynamic (MHD) equations. The method uses the classical inf‐sup stable Mini/Taylor‐Hood (Mini/TH) finite element pairs to appropriate the velocity and pressure, and Raviart–Thomas (RT) face element to discretize the current density spatially, and the semi‐implicit Euler scheme with an additional stabilized term and some delicate implicit–explicit handling for the coupling terms temporally. The method enjoys some impressive features that it is linear, decoupled, unconditional energy stable and charge‐conservative. Due to the errors from the explicit handing of the coupling terms and the existence of the artificial stabilized term, and the contamination of the lower‐order RT face discretization in the error analysis, the existing theoretical results are not unconditional and optimal. By utilizing the anti‐symmetric structure of the coupling terms and the existence of the extra dissipative term, and the negative‐norm estimate for the mixed Poisson projection, we establish the unconditional and optimal error estimates for all the variables. Numerical tests are presented to illustrate our theoretical findings.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discontinuous Galerkin finite element method for dynamic viscoelasticity models of power‐law type 幂律型动态粘弹性模型的非连续 Galerkin 有限元方法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-06 DOI: 10.1002/num.23107
Yongseok Jang, Simon Shaw
{"title":"Discontinuous Galerkin finite element method for dynamic viscoelasticity models of power‐law type","authors":"Yongseok Jang, Simon Shaw","doi":"10.1002/num.23107","DOIUrl":"https://doi.org/10.1002/num.23107","url":null,"abstract":"Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power‐law type stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra integral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin methods, <jats:italic>symmetric interior penalty Galerkin method</jats:italic> (SIPG) for spatial discretization, and the implicit finite difference schemes in time, <jats:italic>Crank–Nicolson method</jats:italic>. Further, in order to manage the weak singularity in the Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses without relying on Grönwall's inequality, and so provide high quality bounds that do not increase exponentially in time. This indicates that our numerical scheme is well‐suited for long‐time simulations. Despite the limited regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error estimates. Finally, we present numerical simulations based on real material data.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A wavelet collocation method for fractional Black–Scholes equations by subdiffusive model 亚扩散模型下分数 Black-Scholes 方程的小波配位法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-02 DOI: 10.1002/num.23103
Davood Damircheli, Mohsen Razzaghi
{"title":"A wavelet collocation method for fractional Black–Scholes equations by subdiffusive model","authors":"Davood Damircheli, Mohsen Razzaghi","doi":"10.1002/num.23103","DOIUrl":"https://doi.org/10.1002/num.23103","url":null,"abstract":"In this investigation, we propose a numerical method based on the fractional‐order generalized Taylor wavelets (FGTW) for option pricing and the fractional Black–Scholes equations. This model studies option pricing when the underlying asset has subdiffusive dynamics. By applying the regularized beta function, we give an exact formula for the Riemann–Liouville fractional integral operator (RLFIO) of the FGTW. An error analysis of the numerical scheme for estimating solutions is performed. Finally, we conduct a variety of numerical experiments for several standard examples from the literature to assess the efficiency of the proposed method.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error estimates for completely discrete FEM in energy‐type and weaker norms 能量型和弱规范下完全离散有限元的误差估计
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-05-02 DOI: 10.1002/num.23106
Lutz Angermann, Peter Knabner, Andreas Rupp
{"title":"Error estimates for completely discrete FEM in energy‐type and weaker norms","authors":"Lutz Angermann, Peter Knabner, Andreas Rupp","doi":"10.1002/num.23106","DOIUrl":"https://doi.org/10.1002/num.23106","url":null,"abstract":"The paper presents error estimates within a unified abstract framework for the analysis of FEM for boundary value problems with linear diffusion‐convection‐reaction equations and boundary conditions of mixed type. Since neither conformity nor consistency properties are assumed, the method is called completely discrete. We investigate two different stabilized discretizations and obtain stability and optimal error estimates in energy‐type norms and, by generalizing the Aubin‐Nitsche technique, optimal error estimates in weaker norms.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized log orthogonal functions spectral collocation method for two dimensional weakly singular Volterra integral equations of the second kind 二维弱奇异 Volterra 第二类积分方程的广义对数正交函数谱配位法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-04-29 DOI: 10.1002/num.23105
Qiumei Huang, Min Wang
{"title":"Generalized log orthogonal functions spectral collocation method for two dimensional weakly singular Volterra integral equations of the second kind","authors":"Qiumei Huang, Min Wang","doi":"10.1002/num.23105","DOIUrl":"https://doi.org/10.1002/num.23105","url":null,"abstract":"In this article, a generalized log orthogonal functions (GLOFs)‐spectral collocation method to two dimensional weakly singular Volterra integral equations of the second kind is proposed. The mild singularities of the solution at the interval endpoint can be captured by Gauss‐GLOFs quadrature and the shortcoming of the traditional spectral method which cannot well deal with weakly singular Volterra integral equations with limited regular solutions is avoided. A detailed convergence analysis of the numerical solution is carried out. The efficiency of the proposed method is demonstrated by numerical examples.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primal‐dual active set algorithm for valuating American options under regime switching 制度转换下美式期权估值的原始二元有源集算法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-04-18 DOI: 10.1002/num.23104
Haiming Song, Jingbo Xu, Jinda Yang, Yutian Li
{"title":"Primal‐dual active set algorithm for valuating American options under regime switching","authors":"Haiming Song, Jingbo Xu, Jinda Yang, Yutian Li","doi":"10.1002/num.23104","DOIUrl":"https://doi.org/10.1002/num.23104","url":null,"abstract":"This paper focuses on numerical algorithms to value American options under regime switching. The prices of such options satisfy a set of complementary parabolic problems on an unbounded domain. Based on our previous experience, the pricing model could be truncated into a linear complementarity problem (LCP) over a bounded domain. In addition, we transform the resulting LCP into an equivalent variational problem (VP), and discretize the VP by an Euler‐finite element method. Since the variational matrix in the discretized system is P‐matrix, a primal‐dual active set (PDAS) algorithm is proposed to evaluate the option prices efficiently. As a specialty of PDAS, the optimal exercise boundaries in all regimes are obtained without further computation cost. Finally, numerical simulations are carried out to test the performance of our proposed algorithm and compare it to existing methods.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信