A posteriori error estimate of the weak Galerkin finite element method solving the Stokes problems on polytopal meshes

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Shipeng Xu
{"title":"A posteriori error estimate of the weak Galerkin finite element method solving the Stokes problems on polytopal meshes","authors":"Shipeng Xu","doi":"10.1002/num.23102","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an a posteriori error estimate of the weak Galerkin finite element method (WG-FEM) solving the Stokes problems with variable coefficients. Its error estimator, based on the property of Stokes' law conservation, Helmholtz decomposition and bubble functions, yields global upper bound and local lower bound for the approximation error of the WG-FEM. Error analysis is proved to be valid under the mesh assumptions of the WG-FEM and the way can be extended to other FEMs with the property of Stokes' law conservation, for example, discontinuous Galerkin (DG) FEMs. Finally, we verify the performance of error estimator by performing a few numerical examples.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"7 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an a posteriori error estimate of the weak Galerkin finite element method (WG-FEM) solving the Stokes problems with variable coefficients. Its error estimator, based on the property of Stokes' law conservation, Helmholtz decomposition and bubble functions, yields global upper bound and local lower bound for the approximation error of the WG-FEM. Error analysis is proved to be valid under the mesh assumptions of the WG-FEM and the way can be extended to other FEMs with the property of Stokes' law conservation, for example, discontinuous Galerkin (DG) FEMs. Finally, we verify the performance of error estimator by performing a few numerical examples.
弱 Galerkin 有限元方法解决多桌面网格上斯托克斯问题的后验误差估计
本文提出了弱伽勒金有限元法(WG-FEM)求解变系数斯托克斯问题的后验误差估计。它的误差估算器基于斯托克斯定律守恒、亥姆霍兹分解和气泡函数的特性,得出了 WG-FEM 近似误差的全局上限和局部下限。误差分析证明在 WG-FEM 的网格假设条件下是有效的,而且这种方法可以扩展到其他具有斯托克斯定律守恒特性的有限元,例如非连续加勒金(DG)有限元。最后,我们通过几个数值示例验证了误差估算器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信