{"title":"A posteriori error estimate of the weak Galerkin finite element method solving the Stokes problems on polytopal meshes","authors":"Shipeng Xu","doi":"10.1002/num.23102","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an a posteriori error estimate of the weak Galerkin finite element method (WG-FEM) solving the Stokes problems with variable coefficients. Its error estimator, based on the property of Stokes' law conservation, Helmholtz decomposition and bubble functions, yields global upper bound and local lower bound for the approximation error of the WG-FEM. Error analysis is proved to be valid under the mesh assumptions of the WG-FEM and the way can be extended to other FEMs with the property of Stokes' law conservation, for example, discontinuous Galerkin (DG) FEMs. Finally, we verify the performance of error estimator by performing a few numerical examples.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"7 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an a posteriori error estimate of the weak Galerkin finite element method (WG-FEM) solving the Stokes problems with variable coefficients. Its error estimator, based on the property of Stokes' law conservation, Helmholtz decomposition and bubble functions, yields global upper bound and local lower bound for the approximation error of the WG-FEM. Error analysis is proved to be valid under the mesh assumptions of the WG-FEM and the way can be extended to other FEMs with the property of Stokes' law conservation, for example, discontinuous Galerkin (DG) FEMs. Finally, we verify the performance of error estimator by performing a few numerical examples.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.