{"title":"制度转换下美式期权估值的原始二元有源集算法","authors":"Haiming Song, Jingbo Xu, Jinda Yang, Yutian Li","doi":"10.1002/num.23104","DOIUrl":null,"url":null,"abstract":"This paper focuses on numerical algorithms to value American options under regime switching. The prices of such options satisfy a set of complementary parabolic problems on an unbounded domain. Based on our previous experience, the pricing model could be truncated into a linear complementarity problem (LCP) over a bounded domain. In addition, we transform the resulting LCP into an equivalent variational problem (VP), and discretize the VP by an Euler‐finite element method. Since the variational matrix in the discretized system is P‐matrix, a primal‐dual active set (PDAS) algorithm is proposed to evaluate the option prices efficiently. As a specialty of PDAS, the optimal exercise boundaries in all regimes are obtained without further computation cost. Finally, numerical simulations are carried out to test the performance of our proposed algorithm and compare it to existing methods.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"2014 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primal‐dual active set algorithm for valuating American options under regime switching\",\"authors\":\"Haiming Song, Jingbo Xu, Jinda Yang, Yutian Li\",\"doi\":\"10.1002/num.23104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on numerical algorithms to value American options under regime switching. The prices of such options satisfy a set of complementary parabolic problems on an unbounded domain. Based on our previous experience, the pricing model could be truncated into a linear complementarity problem (LCP) over a bounded domain. In addition, we transform the resulting LCP into an equivalent variational problem (VP), and discretize the VP by an Euler‐finite element method. Since the variational matrix in the discretized system is P‐matrix, a primal‐dual active set (PDAS) algorithm is proposed to evaluate the option prices efficiently. As a specialty of PDAS, the optimal exercise boundaries in all regimes are obtained without further computation cost. Finally, numerical simulations are carried out to test the performance of our proposed algorithm and compare it to existing methods.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23104\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究制度转换下美式期权估值的数值算法。此类期权的价格满足一组无界域上的互补抛物线问题。根据我们以往的经验,定价模型可以截断为有界域上的线性互补问题(LCP)。此外,我们还将 LCP 转化为等效的变分问题(VP),并采用欧拉有限元法对 VP 进行离散化处理。由于离散化系统中的变分矩阵是 P 矩阵,因此我们提出了一种原始双主动集(PDAS)算法来有效评估期权价格。作为 PDAS 的特长,无需更多计算成本即可获得所有制度下的最优行使边界。最后,我们进行了数值模拟,以检验我们提出的算法的性能,并将其与现有方法进行比较。
Primal‐dual active set algorithm for valuating American options under regime switching
This paper focuses on numerical algorithms to value American options under regime switching. The prices of such options satisfy a set of complementary parabolic problems on an unbounded domain. Based on our previous experience, the pricing model could be truncated into a linear complementarity problem (LCP) over a bounded domain. In addition, we transform the resulting LCP into an equivalent variational problem (VP), and discretize the VP by an Euler‐finite element method. Since the variational matrix in the discretized system is P‐matrix, a primal‐dual active set (PDAS) algorithm is proposed to evaluate the option prices efficiently. As a specialty of PDAS, the optimal exercise boundaries in all regimes are obtained without further computation cost. Finally, numerical simulations are carried out to test the performance of our proposed algorithm and compare it to existing methods.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.