{"title":"亚扩散模型下分数 Black-Scholes 方程的小波配位法","authors":"Davood Damircheli, Mohsen Razzaghi","doi":"10.1002/num.23103","DOIUrl":null,"url":null,"abstract":"In this investigation, we propose a numerical method based on the fractional‐order generalized Taylor wavelets (FGTW) for option pricing and the fractional Black–Scholes equations. This model studies option pricing when the underlying asset has subdiffusive dynamics. By applying the regularized beta function, we give an exact formula for the Riemann–Liouville fractional integral operator (RLFIO) of the FGTW. An error analysis of the numerical scheme for estimating solutions is performed. Finally, we conduct a variety of numerical experiments for several standard examples from the literature to assess the efficiency of the proposed method.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"45 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wavelet collocation method for fractional Black–Scholes equations by subdiffusive model\",\"authors\":\"Davood Damircheli, Mohsen Razzaghi\",\"doi\":\"10.1002/num.23103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation, we propose a numerical method based on the fractional‐order generalized Taylor wavelets (FGTW) for option pricing and the fractional Black–Scholes equations. This model studies option pricing when the underlying asset has subdiffusive dynamics. By applying the regularized beta function, we give an exact formula for the Riemann–Liouville fractional integral operator (RLFIO) of the FGTW. An error analysis of the numerical scheme for estimating solutions is performed. Finally, we conduct a variety of numerical experiments for several standard examples from the literature to assess the efficiency of the proposed method.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A wavelet collocation method for fractional Black–Scholes equations by subdiffusive model
In this investigation, we propose a numerical method based on the fractional‐order generalized Taylor wavelets (FGTW) for option pricing and the fractional Black–Scholes equations. This model studies option pricing when the underlying asset has subdiffusive dynamics. By applying the regularized beta function, we give an exact formula for the Riemann–Liouville fractional integral operator (RLFIO) of the FGTW. An error analysis of the numerical scheme for estimating solutions is performed. Finally, we conduct a variety of numerical experiments for several standard examples from the literature to assess the efficiency of the proposed method.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.