{"title":"An a posteriori error analysis for an augmented discontinuous Galerkin method applied to Stokes problem","authors":"Tomás P. Barrios, Rommel Bustinza","doi":"10.1002/num.23100","DOIUrl":null,"url":null,"abstract":"This paper deals with the a posteriori error analysis for an augmented mixed discontinuous formulation for the stationary Stokes problem. By considering an appropriate auxiliary problem, we derive an a posteriori error estimator. We prove that this estimator is reliable and locally efficient, and consists of just five residual terms. Numerical experiments confirm the theoretical properties of the augmented discontinuous scheme as well as of the estimator. They also show the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"74 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the a posteriori error analysis for an augmented mixed discontinuous formulation for the stationary Stokes problem. By considering an appropriate auxiliary problem, we derive an a posteriori error estimator. We prove that this estimator is reliable and locally efficient, and consists of just five residual terms. Numerical experiments confirm the theoretical properties of the augmented discontinuous scheme as well as of the estimator. They also show the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.