Unconditional H2$$ {H}^2 $$‐stability of the Euler implicit/explicit SAV‐based scheme for the 2D Navier–Stokes equations with smooth or nonsmooth initial data

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Teng‐Yuan Chang, Ming‐Cheng Shiue
{"title":"Unconditional H2$$ {H}^2 $$‐stability of the Euler implicit/explicit SAV‐based scheme for the 2D Navier–Stokes equations with smooth or nonsmooth initial data","authors":"Teng‐Yuan Chang, Ming‐Cheng Shiue","doi":"10.1002/num.23099","DOIUrl":null,"url":null,"abstract":"In this article, we propose ‐unconditional stable schemes for solving time‐dependent incompressible Navier–Stokes equations with smooth or nonsmooth initial data, , . The ‐stability analysis is established by leveraging the scalar auxiliary variable (SAV) approach. When dealing with nonsmooth initial data, we utilize a limited number of iteration of the semi‐implicit scheme followed by the SAV scheme. The overall efficiency is greatly enhanced due to the minimal computational cost of the semi‐implicit scheme and the explicit treatment of the nonlinear term within the SAV approach. The proposed schemes investigate two types of scalar auxiliary variables: the energy‐based variable and the exponential‐based variable. Rigorous proofs of the ‐unconditional stability of both schemes have been provided. Notice that both proposed numerical schemes enjoy unconditional long time stability for smooth and nonsmooth initial data when . Numerical experiments have been conducted to demonstrate the theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose ‐unconditional stable schemes for solving time‐dependent incompressible Navier–Stokes equations with smooth or nonsmooth initial data, , . The ‐stability analysis is established by leveraging the scalar auxiliary variable (SAV) approach. When dealing with nonsmooth initial data, we utilize a limited number of iteration of the semi‐implicit scheme followed by the SAV scheme. The overall efficiency is greatly enhanced due to the minimal computational cost of the semi‐implicit scheme and the explicit treatment of the nonlinear term within the SAV approach. The proposed schemes investigate two types of scalar auxiliary variables: the energy‐based variable and the exponential‐based variable. Rigorous proofs of the ‐unconditional stability of both schemes have been provided. Notice that both proposed numerical schemes enjoy unconditional long time stability for smooth and nonsmooth initial data when . Numerical experiments have been conducted to demonstrate the theoretical results.
具有光滑或非光滑初始数据的二维纳维-斯托克斯方程基于欧拉隐式/显式 SAV 方案的无条件 H2$$ {H}^2 $$ 稳定性
在本文中,我们提出了用于求解具有光滑或非光滑初始数据(Ⅳ)的时变不可压缩纳维-斯托克斯方程的-条件稳定方案。利用标量辅助变量(SAV)方法建立了-稳定性分析。在处理非光滑初始数据时,我们使用了有限次数的半隐式方案迭代,然后再使用 SAV 方案。由于半隐式方案的计算成本极低,而且 SAV 方法中对非线性项进行了明确处理,因此整体效率大大提高。所提出的方案研究了两类标量辅助变量:基于能量的变量和基于指数的变量。两种方案的无条件稳定性都得到了严格证明。我们注意到,当......或......时,对于光滑或非光滑的初始数据,这两种方案都具有无条件的长时间稳定性。为了证明理论结果,我们进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信