{"title":"二维弱奇异 Volterra 第二类积分方程的广义对数正交函数谱配位法","authors":"Qiumei Huang, Min Wang","doi":"10.1002/num.23105","DOIUrl":null,"url":null,"abstract":"In this article, a generalized log orthogonal functions (GLOFs)‐spectral collocation method to two dimensional weakly singular Volterra integral equations of the second kind is proposed. The mild singularities of the solution at the interval endpoint can be captured by Gauss‐GLOFs quadrature and the shortcoming of the traditional spectral method which cannot well deal with weakly singular Volterra integral equations with limited regular solutions is avoided. A detailed convergence analysis of the numerical solution is carried out. The efficiency of the proposed method is demonstrated by numerical examples.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"82 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized log orthogonal functions spectral collocation method for two dimensional weakly singular Volterra integral equations of the second kind\",\"authors\":\"Qiumei Huang, Min Wang\",\"doi\":\"10.1002/num.23105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a generalized log orthogonal functions (GLOFs)‐spectral collocation method to two dimensional weakly singular Volterra integral equations of the second kind is proposed. The mild singularities of the solution at the interval endpoint can be captured by Gauss‐GLOFs quadrature and the shortcoming of the traditional spectral method which cannot well deal with weakly singular Volterra integral equations with limited regular solutions is avoided. A detailed convergence analysis of the numerical solution is carried out. The efficiency of the proposed method is demonstrated by numerical examples.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Generalized log orthogonal functions spectral collocation method for two dimensional weakly singular Volterra integral equations of the second kind
In this article, a generalized log orthogonal functions (GLOFs)‐spectral collocation method to two dimensional weakly singular Volterra integral equations of the second kind is proposed. The mild singularities of the solution at the interval endpoint can be captured by Gauss‐GLOFs quadrature and the shortcoming of the traditional spectral method which cannot well deal with weakly singular Volterra integral equations with limited regular solutions is avoided. A detailed convergence analysis of the numerical solution is carried out. The efficiency of the proposed method is demonstrated by numerical examples.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.