Numerical Methods for Partial Differential Equations最新文献

筛选
英文 中文
Adaptive finite element methods for scalar double‐well problem 标量双井问题的自适应有限元方法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-03-08 DOI: 10.1002/num.23096
Bingzhen Li, Dongjie Liu
{"title":"Adaptive finite element methods for scalar double‐well problem","authors":"Bingzhen Li, Dongjie Liu","doi":"10.1002/num.23096","DOIUrl":"https://doi.org/10.1002/num.23096","url":null,"abstract":"Some scalar double‐well problems eventually lead to a degenerate convex minimization problem with unique stress. We consider the adaptive conforming and nonconforming finite element methods for the scalar double‐well problem with the reliable a posteriori error analysis. A number of experiments confirm the effective decay rates of the methods.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"276 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On strong convergence of a fully discrete scheme for solving stochastic strongly damped wave equations 论求解随机强阻尼波方程的全离散方案的强收敛性
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-02-17 DOI: 10.1002/num.23094
Chengqiang Xu, Yibo Wang, Wanrong Cao
{"title":"On strong convergence of a fully discrete scheme for solving stochastic strongly damped wave equations","authors":"Chengqiang Xu, Yibo Wang, Wanrong Cao","doi":"10.1002/num.23094","DOIUrl":"https://doi.org/10.1002/num.23094","url":null,"abstract":"This article develops an efficient fully discrete scheme for a stochastic strongly damped wave equation (SSDWE) driven by an additive noise and presents its error estimates in the strong sense. We use the truncated spectral expansion of the noise to get an approximate equation and prove its regularity. Then we establish a spatio-temporal discretization of the approximate equation by a finite element method in space and an exponential trapezoidal scheme in time. We prove that the combination can derive higher strong convergence order in time than the use of the piecewise approximation of the noise and the exponential Euler scheme or the implicit Euler scheme in time. Particularly, the temporal strong convergence order of the fully discrete scheme reaches <mjx-container aria-label=\"5 divided by 4 minus epsilon\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"5,4\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"subtraction\" data-semantic-speech=\"5 divided by 4 minus epsilon\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/246ca0b6-0dc3-49d5-80f8-c979b4835343/num23094-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"5,4\" data-semantic-content=\"3\" data-semantic-role=\"subtraction\" data-semantic-speech=\"5 divided by 4 minus epsilon\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixo","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"199 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A second-order time discretizing block-centered finite difference method for compressible wormhole propagation 可压缩虫洞传播的二阶时间离散块中心有限差分法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-02-07 DOI: 10.1002/num.23091
Fei Sun, Xiaoli Li, Hongxing Rui
{"title":"A second-order time discretizing block-centered finite difference method for compressible wormhole propagation","authors":"Fei Sun, Xiaoli Li, Hongxing Rui","doi":"10.1002/num.23091","DOIUrl":"https://doi.org/10.1002/num.23091","url":null,"abstract":"In this paper, a second-order time discretizing block-centered finite difference method is introduced to solve the compressible wormhole propagation. The optimal second-order error estimates for the porosity, pressure, velocity, concentration and its flux are established carefully in different discrete norms on non-uniform grids. Then by introducing Lagrange multiplier, a novel bound-preserving scheme for concentration is constructed. Finally, numerical experiments are carried out to demonstrate the correctness of theoretical analysis and capability for simulations of compressible wormhole propagation.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"6 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps 撤回:具有边界跳跃的奇异扰动一般边界值问题解的渐近行为
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-02-01 DOI: 10.1002/num.23089
{"title":"Retraction: Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps","authors":"","doi":"10.1002/num.23089","DOIUrl":"https://doi.org/10.1002/num.23089","url":null,"abstract":"<b>Retraction:</b> Nurgabyl DN, Uaissov AB. Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps. <i>Numer Methods Partial Differential Eq</i>. 2021; 37: 2375–2392. https://doi.org/10.1002/num.22719","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"5 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully decoupled unconditionally stable Crank–Nicolson leapfrog numerical methods for the Cahn–Hilliard–Darcy system 针对卡恩-希利亚德-达西系统的完全解耦无条件稳定的克兰-尼科尔森跃迁数值方法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-01-30 DOI: 10.1002/num.23087
Yali Gao, Daozhi Han
{"title":"Fully decoupled unconditionally stable Crank–Nicolson leapfrog numerical methods for the Cahn–Hilliard–Darcy system","authors":"Yali Gao, Daozhi Han","doi":"10.1002/num.23087","DOIUrl":"https://doi.org/10.1002/num.23087","url":null,"abstract":"We develop two totally decoupled, linear and second-order accurate numerical methods that are unconditionally energy stable for solving the Cahn–Hilliard–Darcy equations for two phase flows in porous media or in a Hele-Shaw cell. The implicit-explicit Crank–Nicolson leapfrog method is employed for the discretization of the Cahn–Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn–Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh–Taylor instability, the Saffman–Taylor instability (fingering phenomenon).","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"3 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the convergence of 2D P4+ triangular and 3D P6+ tetrahedral divergence-free finite elements 论二维 P4+ 三角形和三维 P6+ 四面体无发散有限元的收敛性
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-01-21 DOI: 10.1002/num.23088
Shangyou Zhang
{"title":"On the convergence of 2D P4+ triangular and 3D P6+ tetrahedral divergence-free finite elements","authors":"Shangyou Zhang","doi":"10.1002/num.23088","DOIUrl":"https://doi.org/10.1002/num.23088","url":null,"abstract":"We show that the discrete velocity solution converges at the optimal order when solving the steady state Stokes equations by the <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0003\" display=\"inline\" location=\"graphic/num23088-math-0003.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msub>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000</mrow>\u0000</msub>\u0000</mrow>\u0000$$ {P}_k $$</annotation>\u0000</semantics></math>-<math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0004\" display=\"inline\" location=\"graphic/num23088-math-0004.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msubsup>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo form=\"prefix\">−</mo>\u0000<mn>1</mn>\u0000</mrow>\u0000<mrow>\u0000<mtext>disc</mtext>\u0000</mrow>\u0000</msubsup>\u0000</mrow>\u0000$$ {P}_{k-1}^{mathrm{disc}} $$</annotation>\u0000</semantics></math> mixed finite element method for <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0005\" display=\"inline\" location=\"graphic/num23088-math-0005.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo>≥</mo>\u0000<mn>4</mn>\u0000</mrow>\u0000$$ kge 4 $$</annotation>\u0000</semantics></math> on 2D triangular grids or <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0006\" display=\"inline\" location=\"graphic/num23088-math-0006.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo>≥</mo>\u0000<mn>6</mn>\u0000</mrow>\u0000$$ kge 6 $$</annotation>\u0000</semantics></math> on tetrahedral grids, even in the case the inf-sup condition fails. By a simple <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0007\" display=\"inline\" location=\"graphic/num23088-math-0007.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msup>\u0000<mrow>\u0000<mi>L</mi>\u0000</mrow>\u0000<mrow>\u0000<mn>2</mn>\u0000</mrow>\u0000</msup>\u0000</mrow>\u0000$$ {L}^2 $$</annotation>\u0000</semantics></math>-projection of the discrete <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0008\" display=\"inline\" location=\"graphic/num23088-math-0008.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msub>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo form=\"prefix\">−</mo>\u0000<mn>1</mn>\u0000</mrow>\u0000</msub>\u0000</mrow>\u0000$$ {P}_{k-1} $$</annotation>\u0000</semantics></math> pressure to the space of continuous <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0009\" display=\"inline\" location=\"graphic/num23088-math-0009.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msub>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo form=\"prefix\">−</mo>\u0000<mn>1</mn>\u0000</mrow>\u0000</msub>\u0000</mrow>\u0000$$ {P}_{k-1} $$</annotation>\u0000</semantics></math> polynomials, we show this post-processed pressure solution also converges at the optimal order. Both 2D and 3D numerical tests are presented, verifying the theory.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"65 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double diffusive effects on nanofluid flow toward a permeable stretching surface in presence of Thermophoresis and Brownian motion effects: A numerical study 热泳效应和布朗运动效应对纳米流体流向可渗透拉伸表面的双重扩散效应:数值研究
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2024-01-19 DOI: 10.1002/num.23086
V. V. L. Deepthi, V. K. Narla, R. Srinivasa Raju
{"title":"Double diffusive effects on nanofluid flow toward a permeable stretching surface in presence of Thermophoresis and Brownian motion effects: A numerical study","authors":"V. V. L. Deepthi, V. K. Narla, R. Srinivasa Raju","doi":"10.1002/num.23086","DOIUrl":"https://doi.org/10.1002/num.23086","url":null,"abstract":"The present study explores the nanofluid boundary layer flow over a stretching sheet with the combined influence of the double diffusive effects of thermophoresis and Brownian motion effects. For the purpose of transforming nonlinear partial differential equations into the linear united ordinary differential equation method, the similarity transformation technique is used. The Runge–Kutta–Fehlberg method was used to solve the equations of flow, along with sufficient boundary conditions. The effect on hydrodynamic, thermal and solutes boundary layers of a number of related parameters is investigated and the effects are graphically displayed. In conclusion, a strong agreement between the current numerical findings and the previous literature results is sought.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"22 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved error estimates of the time-splitting methods for the long-time dynamics of the Klein–Gordon–Dirac system with the small coupling constant 具有小耦合常数的克莱因-戈登-狄拉克系统长时动力学时间分割方法的改进误差估计
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2023-12-11 DOI: 10.1002/num.23084
Jiyong Li
{"title":"Improved error estimates of the time-splitting methods for the long-time dynamics of the Klein–Gordon–Dirac system with the small coupling constant","authors":"Jiyong Li","doi":"10.1002/num.23084","DOIUrl":"https://doi.org/10.1002/num.23084","url":null,"abstract":"We provide improved uniform error estimates for the time-splitting Fourier pseudo-spectral (TSFP) methods applied to the Klein–Gordon–Dirac system (KGDS) with the small parameter &lt;mjx-container ctxtmenu_counter=\"0\" jax=\"CHTML\" style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" data-semantic-complexity=\"5.5\" location=\"graphic/num23084-math-0001.png\"&gt;&lt;mjx-semantics data-semantic-complexity=\"5.5\"&gt;&lt;mjx-maction data-collapsible=\"true\" data-semantic-complexity=\"1.5\" toggle=\"2\"&gt;&lt;mjx-mrow data-semantic-children=\"0,8\" data-semantic-complexity=\"16\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"element\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-children=\"7\" data-semantic-complexity=\"11\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-complexity=\"6\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-maction&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:num:media:num23084:num23084-math-0001\" data-semantic-complexity=\"5.5\" display=\"inline\" location=\"graphic/num23084-math-0001.png\" overflow=\"s","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust finite element methods and solvers for the Biot–Brinkman equations in vorticity form 涡量型Biot-Brinkman方程的鲁棒有限元方法及求解方法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2023-11-27 DOI: 10.1002/num.23083
Ruben Caraballo, Chansophea Wathanak In, Alberto F. Martín, Ricardo Ruiz-Baier
{"title":"Robust finite element methods and solvers for the Biot–Brinkman equations in vorticity form","authors":"Ruben Caraballo, Chansophea Wathanak In, Alberto F. Martín, Ricardo Ruiz-Baier","doi":"10.1002/num.23083","DOIUrl":"https://doi.org/10.1002/num.23083","url":null,"abstract":"In this article, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in a variety of regimes, including the case of large Lamé parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification and testing of robustness of block-diagonal preconditioners with respect to model parameters.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"28 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iteration acceleration methods for solving three-temperature heat conduction equations on distorted meshes 变形网格上三温热传导方程的迭代加速求解方法
IF 3.9 3区 数学
Numerical Methods for Partial Differential Equations Pub Date : 2023-11-27 DOI: 10.1002/num.23085
Yunlong Yu, Xingding Chen, Yanzhong Yao
{"title":"Iteration acceleration methods for solving three-temperature heat conduction equations on distorted meshes","authors":"Yunlong Yu, Xingding Chen, Yanzhong Yao","doi":"10.1002/num.23085","DOIUrl":"https://doi.org/10.1002/num.23085","url":null,"abstract":"This article focuses on designing efficient iteration algorithms for nonequilibrium three-temperature heat conduction equations, which are used to formulate the radiative energy transport problem. Based on the framework of relaxation iteration, we design a new accelerated iteration algorithm by reasonable approximation of the Jacobi matrix, according to the characteristics of the discrete scheme for the three-temperature equations. Adopting the iteration framework, we analyze the advantages and disadvantages of several iteration algorithms commonly used in practice and the new iteration algorithm. Finally, we compare the new iteration algorithm with some other iteration algorithms by solving several nonlinear models, and show that the new algorithm can achieve significant acceleration effect.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"3 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信