{"title":"标量双井问题的自适应有限元方法","authors":"Bingzhen Li, Dongjie Liu","doi":"10.1002/num.23096","DOIUrl":null,"url":null,"abstract":"Some scalar double‐well problems eventually lead to a degenerate convex minimization problem with unique stress. We consider the adaptive conforming and nonconforming finite element methods for the scalar double‐well problem with the reliable a posteriori error analysis. A number of experiments confirm the effective decay rates of the methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive finite element methods for scalar double‐well problem\",\"authors\":\"Bingzhen Li, Dongjie Liu\",\"doi\":\"10.1002/num.23096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some scalar double‐well problems eventually lead to a degenerate convex minimization problem with unique stress. We consider the adaptive conforming and nonconforming finite element methods for the scalar double‐well problem with the reliable a posteriori error analysis. A number of experiments confirm the effective decay rates of the methods.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Adaptive finite element methods for scalar double‐well problem
Some scalar double‐well problems eventually lead to a degenerate convex minimization problem with unique stress. We consider the adaptive conforming and nonconforming finite element methods for the scalar double‐well problem with the reliable a posteriori error analysis. A number of experiments confirm the effective decay rates of the methods.