Fully decoupled unconditionally stable Crank–Nicolson leapfrog numerical methods for the Cahn–Hilliard–Darcy system

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yali Gao, Daozhi Han
{"title":"Fully decoupled unconditionally stable Crank–Nicolson leapfrog numerical methods for the Cahn–Hilliard–Darcy system","authors":"Yali Gao, Daozhi Han","doi":"10.1002/num.23087","DOIUrl":null,"url":null,"abstract":"We develop two totally decoupled, linear and second-order accurate numerical methods that are unconditionally energy stable for solving the Cahn–Hilliard–Darcy equations for two phase flows in porous media or in a Hele-Shaw cell. The implicit-explicit Crank–Nicolson leapfrog method is employed for the discretization of the Cahn–Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn–Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh–Taylor instability, the Saffman–Taylor instability (fingering phenomenon).","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop two totally decoupled, linear and second-order accurate numerical methods that are unconditionally energy stable for solving the Cahn–Hilliard–Darcy equations for two phase flows in porous media or in a Hele-Shaw cell. The implicit-explicit Crank–Nicolson leapfrog method is employed for the discretization of the Cahn–Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn–Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh–Taylor instability, the Saffman–Taylor instability (fingering phenomenon).
针对卡恩-希利亚德-达西系统的完全解耦无条件稳定的克兰-尼科尔森跃迁数值方法
我们开发了两种完全解耦的线性二阶精确数值方法,这些方法无条件能量稳定,可用于求解多孔介质或 Hele-Shaw 单元中两相流动的 Cahn-Hilliard-Darcy 方程。在对 Cahn-Hiliard 方程进行离散化时,采用了隐式-显式 Crank-Nicolson 跃迁法,以获得线性方案。此外,还分别采用了人工压缩技术和压力校正方法,从而可以独立求解卡恩-希利亚德方程和达西压力更新。我们确定了这些方案的无条件长期稳定性。为了证明数值方法的准确性和稳健性,我们进行了大量的数值实验,包括对雷利-泰勒不稳定性、萨夫曼-泰勒不稳定性(指状现象)的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信