论二维 P4+ 三角形和三维 P6+ 四面体无发散有限元的收敛性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shangyou Zhang
{"title":"论二维 P4+ 三角形和三维 P6+ 四面体无发散有限元的收敛性","authors":"Shangyou Zhang","doi":"10.1002/num.23088","DOIUrl":null,"url":null,"abstract":"We show that the discrete velocity solution converges at the optimal order when solving the steady state Stokes equations by the <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0003\" display=\"inline\" location=\"graphic/num23088-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>P</mi>\n</mrow>\n<mrow>\n<mi>k</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {P}_k $$</annotation>\n</semantics></math>-<math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0004\" display=\"inline\" location=\"graphic/num23088-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msubsup>\n<mrow>\n<mi>P</mi>\n</mrow>\n<mrow>\n<mi>k</mi>\n<mo form=\"prefix\">−</mo>\n<mn>1</mn>\n</mrow>\n<mrow>\n<mtext>disc</mtext>\n</mrow>\n</msubsup>\n</mrow>\n$$ {P}_{k-1}^{\\mathrm{disc}} $$</annotation>\n</semantics></math> mixed finite element method for <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0005\" display=\"inline\" location=\"graphic/num23088-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n<mo>≥</mo>\n<mn>4</mn>\n</mrow>\n$$ k\\ge 4 $$</annotation>\n</semantics></math> on 2D triangular grids or <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0006\" display=\"inline\" location=\"graphic/num23088-math-0006.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n<mo>≥</mo>\n<mn>6</mn>\n</mrow>\n$$ k\\ge 6 $$</annotation>\n</semantics></math> on tetrahedral grids, even in the case the inf-sup condition fails. By a simple <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0007\" display=\"inline\" location=\"graphic/num23088-math-0007.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^2 $$</annotation>\n</semantics></math>-projection of the discrete <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0008\" display=\"inline\" location=\"graphic/num23088-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>P</mi>\n</mrow>\n<mrow>\n<mi>k</mi>\n<mo form=\"prefix\">−</mo>\n<mn>1</mn>\n</mrow>\n</msub>\n</mrow>\n$$ {P}_{k-1} $$</annotation>\n</semantics></math> pressure to the space of continuous <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0009\" display=\"inline\" location=\"graphic/num23088-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>P</mi>\n</mrow>\n<mrow>\n<mi>k</mi>\n<mo form=\"prefix\">−</mo>\n<mn>1</mn>\n</mrow>\n</msub>\n</mrow>\n$$ {P}_{k-1} $$</annotation>\n</semantics></math> polynomials, we show this post-processed pressure solution also converges at the optimal order. Both 2D and 3D numerical tests are presented, verifying the theory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of 2D P4+ triangular and 3D P6+ tetrahedral divergence-free finite elements\",\"authors\":\"Shangyou Zhang\",\"doi\":\"10.1002/num.23088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the discrete velocity solution converges at the optimal order when solving the steady state Stokes equations by the <math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mrow>\\n<mi>P</mi>\\n</mrow>\\n<mrow>\\n<mi>k</mi>\\n</mrow>\\n</msub>\\n</mrow>\\n$$ {P}_k $$</annotation>\\n</semantics></math>-<math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0004.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msubsup>\\n<mrow>\\n<mi>P</mi>\\n</mrow>\\n<mrow>\\n<mi>k</mi>\\n<mo form=\\\"prefix\\\">−</mo>\\n<mn>1</mn>\\n</mrow>\\n<mrow>\\n<mtext>disc</mtext>\\n</mrow>\\n</msubsup>\\n</mrow>\\n$$ {P}_{k-1}^{\\\\mathrm{disc}} $$</annotation>\\n</semantics></math> mixed finite element method for <math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0005.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>k</mi>\\n<mo>≥</mo>\\n<mn>4</mn>\\n</mrow>\\n$$ k\\\\ge 4 $$</annotation>\\n</semantics></math> on 2D triangular grids or <math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0006.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>k</mi>\\n<mo>≥</mo>\\n<mn>6</mn>\\n</mrow>\\n$$ k\\\\ge 6 $$</annotation>\\n</semantics></math> on tetrahedral grids, even in the case the inf-sup condition fails. By a simple <math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0007.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>L</mi>\\n</mrow>\\n<mrow>\\n<mn>2</mn>\\n</mrow>\\n</msup>\\n</mrow>\\n$$ {L}^2 $$</annotation>\\n</semantics></math>-projection of the discrete <math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0008.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mrow>\\n<mi>P</mi>\\n</mrow>\\n<mrow>\\n<mi>k</mi>\\n<mo form=\\\"prefix\\\">−</mo>\\n<mn>1</mn>\\n</mrow>\\n</msub>\\n</mrow>\\n$$ {P}_{k-1} $$</annotation>\\n</semantics></math> pressure to the space of continuous <math altimg=\\\"urn:x-wiley:num:media:num23088:num23088-math-0009\\\" display=\\\"inline\\\" location=\\\"graphic/num23088-math-0009.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mrow>\\n<mi>P</mi>\\n</mrow>\\n<mrow>\\n<mi>k</mi>\\n<mo form=\\\"prefix\\\">−</mo>\\n<mn>1</mn>\\n</mrow>\\n</msub>\\n</mrow>\\n$$ {P}_{k-1} $$</annotation>\\n</semantics></math> polynomials, we show this post-processed pressure solution also converges at the optimal order. Both 2D and 3D numerical tests are presented, verifying the theory.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究表明,用 Pk$$ {P}_k $$-Pk-1disc$$ {P}_{k-1}^{mathrm{disc}} 混合有限元法求解稳态斯托克斯方程时,离散速度解以最优阶收敛。$$ 混合有限元法在二维三角形网格上计算 k≥4$ k\ge 4 $$ 或在四面体网格上计算 k≥6$ k\ge 6 $$,即使在 inf-sup 条件失效的情况下也是如此。通过将离散的 Pk-1$$ {P}_{k-1} $ $ 压力简单地投影到连续的 Pk-1$$ {P}_{k-1} $ 多项式空间的 L2$$ {L}^2 $$投影,我们证明了这种后处理压力解也能以最优阶收敛。二维和三维数值测试都验证了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the convergence of 2D P4+ triangular and 3D P6+ tetrahedral divergence-free finite elements
We show that the discrete velocity solution converges at the optimal order when solving the steady state Stokes equations by the P k $$ {P}_k $$ - P k 1 disc $$ {P}_{k-1}^{\mathrm{disc}} $$ mixed finite element method for k 4 $$ k\ge 4 $$ on 2D triangular grids or k 6 $$ k\ge 6 $$ on tetrahedral grids, even in the case the inf-sup condition fails. By a simple L 2 $$ {L}^2 $$ -projection of the discrete P k 1 $$ {P}_{k-1} $$ pressure to the space of continuous P k 1 $$ {P}_{k-1} $$ polynomials, we show this post-processed pressure solution also converges at the optimal order. Both 2D and 3D numerical tests are presented, verifying the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信