{"title":"可压缩虫洞传播的二阶时间离散块中心有限差分法","authors":"Fei Sun, Xiaoli Li, Hongxing Rui","doi":"10.1002/num.23091","DOIUrl":null,"url":null,"abstract":"In this paper, a second-order time discretizing block-centered finite difference method is introduced to solve the compressible wormhole propagation. The optimal second-order error estimates for the porosity, pressure, velocity, concentration and its flux are established carefully in different discrete norms on non-uniform grids. Then by introducing Lagrange multiplier, a novel bound-preserving scheme for concentration is constructed. Finally, numerical experiments are carried out to demonstrate the correctness of theoretical analysis and capability for simulations of compressible wormhole propagation.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second-order time discretizing block-centered finite difference method for compressible wormhole propagation\",\"authors\":\"Fei Sun, Xiaoli Li, Hongxing Rui\",\"doi\":\"10.1002/num.23091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a second-order time discretizing block-centered finite difference method is introduced to solve the compressible wormhole propagation. The optimal second-order error estimates for the porosity, pressure, velocity, concentration and its flux are established carefully in different discrete norms on non-uniform grids. Then by introducing Lagrange multiplier, a novel bound-preserving scheme for concentration is constructed. Finally, numerical experiments are carried out to demonstrate the correctness of theoretical analysis and capability for simulations of compressible wormhole propagation.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23091\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A second-order time discretizing block-centered finite difference method for compressible wormhole propagation
In this paper, a second-order time discretizing block-centered finite difference method is introduced to solve the compressible wormhole propagation. The optimal second-order error estimates for the porosity, pressure, velocity, concentration and its flux are established carefully in different discrete norms on non-uniform grids. Then by introducing Lagrange multiplier, a novel bound-preserving scheme for concentration is constructed. Finally, numerical experiments are carried out to demonstrate the correctness of theoretical analysis and capability for simulations of compressible wormhole propagation.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.