Error estimates for completely discrete FEM in energy‐type and weaker norms

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lutz Angermann, Peter Knabner, Andreas Rupp
{"title":"Error estimates for completely discrete FEM in energy‐type and weaker norms","authors":"Lutz Angermann, Peter Knabner, Andreas Rupp","doi":"10.1002/num.23106","DOIUrl":null,"url":null,"abstract":"The paper presents error estimates within a unified abstract framework for the analysis of FEM for boundary value problems with linear diffusion‐convection‐reaction equations and boundary conditions of mixed type. Since neither conformity nor consistency properties are assumed, the method is called completely discrete. We investigate two different stabilized discretizations and obtain stability and optimal error estimates in energy‐type norms and, by generalizing the Aubin‐Nitsche technique, optimal error estimates in weaker norms.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents error estimates within a unified abstract framework for the analysis of FEM for boundary value problems with linear diffusion‐convection‐reaction equations and boundary conditions of mixed type. Since neither conformity nor consistency properties are assumed, the method is called completely discrete. We investigate two different stabilized discretizations and obtain stability and optimal error estimates in energy‐type norms and, by generalizing the Aubin‐Nitsche technique, optimal error estimates in weaker norms.
能量型和弱规范下完全离散有限元的误差估计
本文在一个统一的抽象框架内提出了误差估计,用于分析具有线性扩散-对流-反应方程和混合型边界条件的边界值问题的有限元分析。由于既不假定符合性也不假定一致性,该方法被称为完全离散法。我们研究了两种不同的稳定离散化方法,获得了能量型规范下的稳定性和最优误差估计,并通过推广奥宾-尼采技术,获得了弱规范下的最优误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信