{"title":"Differentiating leukemia subtypes based on metabolic signatures using hyperpolarized <sup>13</sup>C NMR.","authors":"Nichlas Vous Christensen, Christoffer Laustsen, Lotte Bonde Bertelsen","doi":"10.1002/nbm.5264","DOIUrl":"10.1002/nbm.5264","url":null,"abstract":"<p><p>Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized <sup>13</sup>C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-<sup>13</sup>C]pyruvate and [1-<sup>13</sup>C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized <sup>13</sup>C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5264"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-12-01Epub Date: 2024-08-05DOI: 10.1002/nbm.5233
Guangliang Ding, Lian Li, Michael Chopp, Li Zhang, Qingjiang Li, Hao Luo, Min Wei, Jing Zhang, Edward Boyd, Zhenggang Zhang, Quan Jiang
{"title":"Velocity of cerebrospinal fluid in the aqueduct measured by phase-contrast MRI in rat.","authors":"Guangliang Ding, Lian Li, Michael Chopp, Li Zhang, Qingjiang Li, Hao Luo, Min Wei, Jing Zhang, Edward Boyd, Zhenggang Zhang, Quan Jiang","doi":"10.1002/nbm.5233","DOIUrl":"10.1002/nbm.5233","url":null,"abstract":"<p><p>Cerebrospinal fluid (CSF) circulation plays a key role in cerebral waste clearance via the glymphatic system. Although CSF flow velocity is an essential component of CSF dynamics, it has not been sufficiently characterized, and particularly, in studies of the glymphatic system in rat. To investigate the relationship between the flow velocity of CSF in the brain aqueduct and the glymphatic waste clearance rate, using phase-contrast MRI we performed the first measurements of CSF velocity in rats. Phase-contrast MRI was performed using a 7 T system to map mean velocity of CSF flow in the aqueduct in rat brain. The effects of age (3 months old versus 18 months old), gender, strain (Wistar, RNU, Dark Agouti), anesthetic agents (isoflurane versus dexmedetomidine), and neurodegenerative disorder (Alzheimer' disease in Fischer TgF344-AD rats, males and females) on CSF velocity were investigated in eight independent groups of rats (12 rats per group). Our results demonstrated that quantitative velocities of CSF flow in the aqueduct averaged 5.16 ± 0.86 mm/s in healthy young adult male Wistar rats. CSF flow velocity in the aqueduct was not altered by rat gender, strain, and the employed anesthetic agents in all rats, also age in the female rats. However, aged (18 months) Wistar male rats exhibited significantly reduced the CSF flow velocity in the aqueduct (4.31 ± 1.08 mm/s). In addition, Alzheimer's disease further reduced the CSF flow velocity in the aqueduct of male and female rats.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5233"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-12-01Epub Date: 2024-10-04DOI: 10.1002/nbm.5270
Lea Behrendt, Marcel Gutberlet, Andreas Voskrebenzev, Filip Klimeš, Arnd J Obert, Agilo L Kern, Dominik Horstmann, Marius M Wernz, Robin A Müller, Frank Wacker, Jens Vogel-Claussen
{"title":"Influence of echo time on pulmonary ventilation and perfusion derived by phase-resolved functional lung (PREFUL) MRI using multi-echo ultrashort echo time acquisition.","authors":"Lea Behrendt, Marcel Gutberlet, Andreas Voskrebenzev, Filip Klimeš, Arnd J Obert, Agilo L Kern, Dominik Horstmann, Marius M Wernz, Robin A Müller, Frank Wacker, Jens Vogel-Claussen","doi":"10.1002/nbm.5270","DOIUrl":"10.1002/nbm.5270","url":null,"abstract":"<p><p>Non-contrast enhanced <sup>1</sup>H magnetic resonance imaging (MRI) is promising for ventilation/perfusion (V/Q) assessment of the lung but the influence of the echo time (TE) on V/Q parameters is lacking. Therefore, the purpose of this study was to investigate the influence of different TEs on pulmonary V/Q parameters derived by phase-resolved functional lung (PREFUL) MRI using a multi-echo ultrashort TE (UTE) acquisition. A 2D multi-echo UTE sequence with radial center out readout and tiny golden angle increment was developed. Forty-eight participants were enrolled in this study: 25 healthy subjects, six patients with asthma, and 17 patients with pulmonary fibrosis. Participants underwent two acquisitions of 2D multi-echo UTE MRI with three TEs per acquisition (TE<sub>1-6</sub>: 0.07, 0.82, 1.72, 2.47, 3.37, and 4.12 ms). Regional ventilation (RVent), flow-volume loop cross-correlation metric (FVL-CM), and normalized perfusion-weighted signal (QN) maps were calculated. V/Q defect percentages (VDP/QDP) were determined. To assess repeatability, the measurement was repeated in healthy subjects. Median and interquartile range of RVent, FVL-CM, QN, VDP, and QDP were calculated. To assess significant differences between parameters obtained at different TEs, Friedman's test and Dunnett's test were performed. Pearson correlation coefficients between RVent derived at TE<sub>1</sub> and the difference in RVent between TE<sub>2,3</sub> and TE<sub>1</sub> were calculated. For repeatability assessment, coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were determined. Significant differences were found comparing V/Q parameters obtained at TE<sub>3-6</sub> compared to TE<sub>1</sub>. CoV increased with TE. For ICC, values between 0.35 (QDP at TE<sub>1</sub>) and 0.83 (VDP<sub>RVent</sub> at TE<sub>2</sub>) were obtained for T<sub>1,2</sub>. Statistically significant differences for ventilation and perfusion parameters derived by PREFUL were found for TE<sub>3-6</sub> compared to TE<sub>1</sub>. All V/Q parameters were well repeatable for TE<sub>1-2</sub>. With increasing TE and respiratory volume, RVent shows a T2*-dependency leading to biased ventilation assessment compared to TE<sub>1</sub>.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5270"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain tumor classification for combining the advantages of multilayer dense net-based feature extraction and hyper-parameters tuned attentive dual residual generative adversarial network classifier using wild horse optimization.","authors":"Shenbagarajan Anantharajan, Shenbagalakshmi Gunasekaran, J Angela Jennifa Sujana","doi":"10.1002/nbm.5246","DOIUrl":"10.1002/nbm.5246","url":null,"abstract":"<p><p>In this manuscript, attentive dual residual generative adversarial network optimized using wild horse optimization algorithm for brain tumor detection (ADRGAN-WHOA-BTD) is proposed. Here, the input imageries are gathered using BraTS, RemBRANDT, and Figshare datasets. Initially, the images are preprocessed to increase the quality of images and eliminate the unwanted noises. The preprocessing is performed with dual-tree complex wavelet transform (DTCWT). The image features like geodesic data and texture features like contrasts, energy, correlations, homogeneity, and entropy are extracted using multilayer dense net methods. Then, the extracted images are given to attentive dual residual generative adversarial network (ADRGAN) classifier for classifying the brain imageries. The ADRGAN weight parameters are tuned based on wild horse optimization algorithm (WHOA). The proposed method is executed in MATLAB. For the BraTS dataset, the ADRGAN-WHOA-BTD method achieved accuracy, sensitivity, specificity, F-measure, precision, and error rates of 99.85%, 99.82%, 98.92%, 99.76%, 99.45%, and 0.15%, respectively. Then, the proposed technique demonstrated a runtime of 13 s, significantly outperforming existing methods.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5246"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-12-01Epub Date: 2024-08-21DOI: 10.1002/nbm.5250
Hector L De Moura, Anmol Monga, Xiaoxia Zhang, Marcelo V W Zibetti, Mahesh B Keerthivasan, Ravinder R Regatte
{"title":"Feasibility of 3D MRI fingerprinting for rapid knee cartilage T<sub>1</sub>, T<sub>2,</sub> and T<sub>1ρ</sub> mapping at 0.55T: Comparison with 3T.","authors":"Hector L De Moura, Anmol Monga, Xiaoxia Zhang, Marcelo V W Zibetti, Mahesh B Keerthivasan, Ravinder R Regatte","doi":"10.1002/nbm.5250","DOIUrl":"10.1002/nbm.5250","url":null,"abstract":"<p><p>Low-field strength scanners present an opportunity for more inclusive imaging exams and bring several challenges including lower signal-to-noise ratio (SNR) and longer scan times. Magnetic resonance fingerprinting (MRF) is a rapid quantitative multiparametric method that can enable multiple quantitative maps simultaneously. To demonstrate the feasibility of an MRF sequence for knee cartilage evaluation in a 0.55T system we performed repeatability and accuracy experiments with agar-gel phantoms. Additionally, five healthy volunteers (age 32 ± 4 years old, 2 females) were scanned at 3T and 0.55T. The MRI acquisition protocols include a stack-of-stars T<sub>1ρ</sub>-enabled MRF sequence, a VIBE sequence with variable flip angles (VFA) for T<sub>1</sub> mapping, and fat-suppressed turbo flash (TFL) sequences for T<sub>2</sub> and T<sub>1ρ</sub> mappings. Double-Echo steady-state (DESS) sequence was also used for cartilage segmentation. Acquisitions were performed at two different field strengths, 0.55T and 3T, with the same sequences but protocols were slightly different to accommodate differences in signal-to-noise ratio and relaxation times. Cartilage segmentation was done using five compartments. T<sub>1</sub>, T<sub>2</sub>, and T<sub>1ρ</sub> values were measured in the knee cartilage using both MRF and conventional relaxometry sequences. The MRF sequence demonstrated excellent repeatability in a test-retest experiment with model agar-gel phantoms, as demonstrated with correlation and Bland-Altman plots. Underestimation of T<sub>1</sub> values was observed on both field strengths, with the average global difference between reference values and the MRF being 151 ms at 0.55T and 337 ms at 3T. At 0.55T, MRF measurements presented significant biases but strong correlations with the reference measurements. Although a larger error was present in T<sub>1</sub> measurements, MRF measurements trended similarly to the conventional measurements for human subjects and model agar-gel phantoms.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5250"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free-breathing time-resolved 4D MRI with improved T1-weighting contrast.","authors":"Jingjia Chen, Ding Xia, Chenchan Huang, Krishna Shanbhogue, Hersh Chandarana, Li Feng","doi":"10.1002/nbm.5247","DOIUrl":"10.1002/nbm.5247","url":null,"abstract":"<p><p>This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5247"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-12-01Epub Date: 2024-08-26DOI: 10.1002/nbm.5251
Yinghao Li, Wei Li, Adrian Paez, Di Cao, Yuanqi Sun, Chunming Gu, Kaihua Zhang, Xinyuan Miao, Peiying Liu, Wenbo Li, Jay J Pillai, Hanzhang Lu, Peter C M van Zijl, Christopher Earley, Xu Li, Jun Hua
{"title":"Imaging arterial and venous vessels using Iron Dextran enhanced multi-echo 3D gradient echo MRI at 7T.","authors":"Yinghao Li, Wei Li, Adrian Paez, Di Cao, Yuanqi Sun, Chunming Gu, Kaihua Zhang, Xinyuan Miao, Peiying Liu, Wenbo Li, Jay J Pillai, Hanzhang Lu, Peter C M van Zijl, Christopher Earley, Xu Li, Jun Hua","doi":"10.1002/nbm.5251","DOIUrl":"10.1002/nbm.5251","url":null,"abstract":"<p><p>Iron Dextran is a widely used iron oxide compound to treat iron-deficiency anemia patients in the clinic. Similar to other iron oxide compounds such as Ferumoxytol, it can also be used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent due to its strong iron-induced T2 and T2* shortening effects. In this study, we seek to evaluate the feasibility of using Iron Dextran enhanced multi-echo susceptibility weighted imaging (SWI) MRI at 7T to image arterial and venous blood vessels in the human brain. Phantom experiments were performed to measure the r2* relaxivity for Iron Dextran in blood, based on which the SWI sequence was optimized. Pre- and post-infusion MR images were acquired in human subjects from which maps of arteries and veins were extracted. The post-contrast SWI images showed enhanced susceptibility difference between blood and the surrounding tissue in both arteries and veins. Our results showed that the proposed Iron Dextran enhanced multi-echo SWI approach allowed the visualization of blood vessels with diameters down to ~100 μm, including small blood vessels supplying and draining small brain structures such as the hippocampus. We conclude that Iron Dextran can be an alternative iron-based MRI contrast agent for blood vessel imaging in the human brain.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5251"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel spin-lock time sampling strategies for improved reproducibility in quantitative T1ρ mapping.","authors":"Sandeep Panwar Jogi, Qi Peng, Ramin Jafari, Ricardo Otazo, Can Wu","doi":"10.1002/nbm.5244","DOIUrl":"10.1002/nbm.5244","url":null,"abstract":"<p><p>This study aimed to optimize the sampling of spin-lock times (TSLs) in quantitative T1ρ mapping for improved reproducibility. Two new TSL sampling schemes were proposed: (i) reproducibility-guided random sampling (RRS) and (ii) reproducibility-guided optimal sampling (ROS). They were compared to the existing linear sampling (LS) and precision-guided sampling (PS) schemes for T1ρ reproducibility through numerical simulations, phantom experiments, and volunteer studies. Each study evaluated the four sampling schemes with three commonly used T1ρ preparations based on composite and balanced spin-locking. Additionally, the phantom and volunteer studies investigated the impact of B<sub>0</sub> and B<sub>1</sub> field inhomogeneities on T1ρ reproducibility, respectively. The reproducibility was assessed using the coefficient of variation (CoV) by repeating the T1ρ measurements eight times for phantom experiments and five times for volunteer studies. Numerical simulations resulted in lower mean CoVs for the proposed RRS (1.74%) and ROS (0.68%) compared to LS (2.93%) and PS (3.68%). In the phantom study, the mean CoVs were also lower for RRS (2.7%) and ROS (2.6%) compared to LS (4.1%) and PS (3.1%). Furthermore, the mean CoVs of the proposed RRS and ROS were statistically lower (P < 0.001) compared to existing LS and PS schemes at a B<sub>1</sub> offset of 20%. In the volunteer study, consistently lower mean CoVs were observed in bilateral thigh muscles for RRS (9.3%) and ROS (9.2%) compared to LS (10.9%) and PS (10.2%), and the difference was more prominent at B<sub>0</sub> offsets higher than 50 Hz. The proposed sampling schemes improve the reproducibility of quantitative T1ρ mapping by optimizing the selection of TSLs. This improvement is especially beneficial for longitudinal studies that track and monitor disease progression and treatment response.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5244"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-12-01Epub Date: 2024-07-30DOI: 10.1002/nbm.5217
Martijn Froeling, Linda Heskamp
{"title":"The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort.","authors":"Martijn Froeling, Linda Heskamp","doi":"10.1002/nbm.5217","DOIUrl":"10.1002/nbm.5217","url":null,"abstract":"<p><p>Spectroscopic imaging, rooted in Dixon's two-echo spin sequence to distinguish water and fat, has evolved significantly in acquisition and processing. Yet precise fat quantification remains a persistent challenge in ongoing research. With adequate phase characterization and correction, the fat composition models will impact measurements of fatty tissue. However, the effect of the used fat model in low-fat regions such as healthy muscle is unknown. In this study, we investigate the effect of assumed fat composition, in terms of chain length and double bond count, on fat fraction quantification in healthy muscle, while addressing phase and relaxometry confounders. For this purpose, we acquired bilateral thigh datasets from 38 healthy volunteers. Fat fractions were estimated using the IDEAL algorithm employing three different fat models fitted with and without the initial phase constrained. After data processing and model fitting, we used a convolutional neural net to automatically segment all thigh muscles and subcutaneous fat to evaluate the fitted parameters. The fat composition was compared with those reported in the literature. Overall, all the observed estimated fat composition values fall within the range of previously reported fatty acid composition based on gas chromatography measurements. All methods and models revealed different estimates of the muscle fat fractions in various evaluated muscle groups. Lateral differences changed from 0.5% to 5.3% in the hamstring muscle groups depending on the chosen method. The lowest observed left-right differences in each muscle group were all for the fat model estimating the number of double bonds with the initial phase unconstrained. With this model, the left-right differences were 0.64% ± 0.31%, 0.50% ± 0.27%, and 0.50% ± 0.40% for the quadriceps, hamstrings, and adductors muscle groups, respectively. Our findings suggest that a fat model estimating double bond numbers while allowing separate phases for each chemical species, given some assumptions, yields the best fat fraction estimate for our dataset.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5217"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-12-01Epub Date: 2024-07-31DOI: 10.1002/nbm.5224
Andrew Frankini, Gaurav Verma, Alan C Seifert, Bradley N Delman, Varun Subramaniam, Priti Balchandani, Akbar Alipour
{"title":"Improvement of MRS at ultra-high field using a wireless RF array.","authors":"Andrew Frankini, Gaurav Verma, Alan C Seifert, Bradley N Delman, Varun Subramaniam, Priti Balchandani, Akbar Alipour","doi":"10.1002/nbm.5224","DOIUrl":"10.1002/nbm.5224","url":null,"abstract":"<p><p>We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and <sup>1</sup>H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The <sup>1</sup>H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized <sup>1</sup>H-MRS is improved significantly in the presence of the array. Comparison of in vivo <sup>1</sup>H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for <sup>1</sup>H-MRS and MRI applications, specifically at 7 T, where <sup>1</sup>H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human <sup>1</sup>H-MRS and MRI in the regions with lower transmit efficiency.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5224"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}