Jennifer Gotta, Leon D Gruenewald, Philipp Reschke, Christian Booz, Scherwin Mahmoudi, Bram Stieltjes, Moon Hyung Choi, Tommaso D'Angelo, Simon Bernatz, Thomas J Vogl, Ralph Sinkus, Robert Grimm, Ralph Strecker, Sebastian Haberkorn, Vitali Koch
{"title":"Noninvasive Grading of Liver Fibrosis Based on Texture Analysis From MRI-Derived Radiomics.","authors":"Jennifer Gotta, Leon D Gruenewald, Philipp Reschke, Christian Booz, Scherwin Mahmoudi, Bram Stieltjes, Moon Hyung Choi, Tommaso D'Angelo, Simon Bernatz, Thomas J Vogl, Ralph Sinkus, Robert Grimm, Ralph Strecker, Sebastian Haberkorn, Vitali Koch","doi":"10.1002/nbm.5301","DOIUrl":null,"url":null,"abstract":"<p><p>Given the increasing global prevalence of metabolic syndrome, this study aimed to assess the potential of MRI-derived radiomics in noninvasively grading fibrosis. The study included 79 prospectively enrolled participants who had undergone MRE due to known or suspected liver disease between November 2022 and September 2023. Among them, 48 patients were diagnosed with histopathologically confirmed liver fibrosis. A total of 107 radiomic features per patient were extracted from MRI imaging. The dataset was then divided into training and test sets for model development and validation. Stepwise feature reduction was employed to identify the most relevant features and subsequently used to train a gradient-boosted tree model. The gradient-boosted tree model, trained on the training cohort with identified radiomic features to differentiate fibrosis grades, exhibited good performances, achieving AUC values from 0.997 to 0.998. In the independent test cohort of 24 patients, the radiomics model demonstrated AUC values ranging from 0.617 to 0.830, with the highest AUC of 0.830 (95% CI 0.520-0.830) for classifying fibrosis grade 2. Incorporating ADC values did not improve the model's performance. In conclusion, our study emphasizes the significant promise of using radiomics analysis on MRI images for noninvasively staging liver fibrosis. This method provides valuable insights into tissue characteristics and patterns, enabling a retrospective liver fibrosis severity assessment from nondedicated MRI scans.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5301"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5301","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given the increasing global prevalence of metabolic syndrome, this study aimed to assess the potential of MRI-derived radiomics in noninvasively grading fibrosis. The study included 79 prospectively enrolled participants who had undergone MRE due to known or suspected liver disease between November 2022 and September 2023. Among them, 48 patients were diagnosed with histopathologically confirmed liver fibrosis. A total of 107 radiomic features per patient were extracted from MRI imaging. The dataset was then divided into training and test sets for model development and validation. Stepwise feature reduction was employed to identify the most relevant features and subsequently used to train a gradient-boosted tree model. The gradient-boosted tree model, trained on the training cohort with identified radiomic features to differentiate fibrosis grades, exhibited good performances, achieving AUC values from 0.997 to 0.998. In the independent test cohort of 24 patients, the radiomics model demonstrated AUC values ranging from 0.617 to 0.830, with the highest AUC of 0.830 (95% CI 0.520-0.830) for classifying fibrosis grade 2. Incorporating ADC values did not improve the model's performance. In conclusion, our study emphasizes the significant promise of using radiomics analysis on MRI images for noninvasively staging liver fibrosis. This method provides valuable insights into tissue characteristics and patterns, enabling a retrospective liver fibrosis severity assessment from nondedicated MRI scans.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.