Stimulated echo acquisition mode (STEAM) diffusion tensor imaging with different diffusion encoding times in the supraspinatus muscle: Test-retest reliability and comparison to spin echo diffusion tensor imaging.
Adrian Alexander Marth, Stefan Sommer, Thorsten Feiweier, Reto Sutter, Daniel Nanz, Constantin von Deuster
{"title":"Stimulated echo acquisition mode (STEAM) diffusion tensor imaging with different diffusion encoding times in the supraspinatus muscle: Test-retest reliability and comparison to spin echo diffusion tensor imaging.","authors":"Adrian Alexander Marth, Stefan Sommer, Thorsten Feiweier, Reto Sutter, Daniel Nanz, Constantin von Deuster","doi":"10.1002/nbm.5279","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) provides insight into the skeletal muscle microstructure and can be acquired using a stimulated echo acquisition mode (STEAM)-based approach to quantify time-dependent tissue diffusion. This study examined diffusion metrics and signal-to-noise ratio (SNR) in the supraspinatus muscle obtained with a STEAM-DTI sequence with different diffusion encoding times (Δ) and compared them to measures from a spin echo (SE) sequence. Ten healthy subjects (mean age 31.5 ± 4.7 years; five females) underwent 3-Tesla STEAM and SE-DTI of the shoulder in three sessions. STEAM was acquired with Δ of 100/200/400/600 ms. The diffusion encoding time in SE scans was 19 ms (b = 500 s/mm<sup>2</sup>). Region of interest-based measurement of fractional anisotropy (FA), mean diffusivity (MD), and SNR was performed. Intraclass correlation coefficients (ICCs) were computed to assess test-retest reliability. ANOVA with post-hoc pairwise tests was used to compare measures between different Δ of STEAM as well as STEAM and SE, respectively. FA was significantly higher (FA<sub>STEAM</sub>: 0.38-0.46 vs. FA<sub>SE</sub>: 0.26) and MD significantly lower (MD<sub>STEAM</sub>: 1.20-1.33 vs. MD<sub>SE</sub>: 1.62 × 10<sup>-3</sup> mm<sup>2</sup>/s) in STEAM compared to SE (p < 0.001, respectively). SNR was significantly higher for SE (72.3 ± 8.7) than for STEAM (p < 0.001). ICCs were excellent for FA in STEAM (≥0.911) and SE (0.960). For MD, ICCs were good for STEAM<sub>100ms-600ms</sub> (≥0.759) and SE (0.752). STEAM and SE exhibited excellent reliability for FA and good reliability for MD in the supraspinatus muscle. SNR was significantly higher in SE compared to STEAM.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5279"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion tensor imaging (DTI) provides insight into the skeletal muscle microstructure and can be acquired using a stimulated echo acquisition mode (STEAM)-based approach to quantify time-dependent tissue diffusion. This study examined diffusion metrics and signal-to-noise ratio (SNR) in the supraspinatus muscle obtained with a STEAM-DTI sequence with different diffusion encoding times (Δ) and compared them to measures from a spin echo (SE) sequence. Ten healthy subjects (mean age 31.5 ± 4.7 years; five females) underwent 3-Tesla STEAM and SE-DTI of the shoulder in three sessions. STEAM was acquired with Δ of 100/200/400/600 ms. The diffusion encoding time in SE scans was 19 ms (b = 500 s/mm2). Region of interest-based measurement of fractional anisotropy (FA), mean diffusivity (MD), and SNR was performed. Intraclass correlation coefficients (ICCs) were computed to assess test-retest reliability. ANOVA with post-hoc pairwise tests was used to compare measures between different Δ of STEAM as well as STEAM and SE, respectively. FA was significantly higher (FASTEAM: 0.38-0.46 vs. FASE: 0.26) and MD significantly lower (MDSTEAM: 1.20-1.33 vs. MDSE: 1.62 × 10-3 mm2/s) in STEAM compared to SE (p < 0.001, respectively). SNR was significantly higher for SE (72.3 ± 8.7) than for STEAM (p < 0.001). ICCs were excellent for FA in STEAM (≥0.911) and SE (0.960). For MD, ICCs were good for STEAM100ms-600ms (≥0.759) and SE (0.752). STEAM and SE exhibited excellent reliability for FA and good reliability for MD in the supraspinatus muscle. SNR was significantly higher in SE compared to STEAM.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.