{"title":"A taxonomic guide to diffusion MRI tractography visualization tools.","authors":"Miriam Laamoumi, Tom Hendriks, Maxime Chamberland","doi":"10.1002/nbm.5267","DOIUrl":"https://doi.org/10.1002/nbm.5267","url":null,"abstract":"<p><p>Visualizing neuroimaging data is a key step in evaluating data quality, interpreting results, and communicating findings. This survey focuses on diffusion MRI tractography, which has been widely used in both research and clinical domains within the neuroimaging community. With an increasing number of tractography tools and software, navigating this landscape poses a challenge, especially for newcomers. A systematic exploration of a diverse range of features is proposed across 27 research tools, delving into their main purpose and examining the presence or absence of prevalent visualization and interactive techniques. The findings are structured within a proposed taxonomy, providing a comprehensive overview. Insights derived from this analysis will help (novice) researchers, clinicians, and developers in identifying knowledge gaps and navigating the landscape of tractography visualization tools.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5267"},"PeriodicalIF":2.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-05-24DOI: 10.1002/nbm.5178
Johnny Der Hovagimian, Pedram Yazdanbakhsh, Hande Halilibrahimoglu, Marcus J Couch, Richard Hoge, David A Rudko
{"title":"A birdcage transmit, 24-channel conformal receive array coil for sensitive <sup>31</sup>P magnetic resonance spectroscopic imaging of the human brain at 7 T.","authors":"Johnny Der Hovagimian, Pedram Yazdanbakhsh, Hande Halilibrahimoglu, Marcus J Couch, Richard Hoge, David A Rudko","doi":"10.1002/nbm.5178","DOIUrl":"10.1002/nbm.5178","url":null,"abstract":"<p><p>Phosphorus (<sup>31</sup>P) magnetic resonance spectroscopic imaging (MRSI) can serve as a critical tool for more direct quantification of brain energy metabolism, tissue pH, and cell membrane turnover. However, the low concentration of <sup>31</sup>P metabolites in biological tissue may result in low signal-to-noise ratio (SNR) in <sup>31</sup>P MRS images. In this work, we present an innovative design and construction of a <sup>31</sup>P radiofrequency coil for whole-brain MRSI at 7 T. Our coil builds on current literature in ultra-high field <sup>31</sup>P coil design and offers complete coverage of the brain, including the cerebellum and brainstem. The coil consists of an actively detunable volume transmit (Tx) resonator and a custom 24-channel receive (Rx) array. The volume Tx resonator is a 16-rung high-pass birdcage coil. The Rx coil consists of a 24-element phased array composed of catered loop shapes and sizes built onto a custom, close-fitting, head-shaped housing. The Rx array was designed to provide complete coverage of the head, while minimizing mutual coupling. The Rx configuration had a mean <math><msub><mi>S</mi> <mn>11</mn></msub> </math> reflection coefficient better than -20 decibels (dB) when the coil was loaded with a human head. The mean mutual coupling ( <math><msub><mi>S</mi> <mn>21</mn></msub> </math> ) among Rx elements, when loaded with a human head, was -16 dB. In phantom imaging, the phased array produced a central SNR that was 4.4-fold higher than the corresponding central SNR when operating the <sup>31</sup>P birdcage as a transceiver. The peripheral SNR was 12-fold higher when applying the optimized phased array. In vivo 3D <sup>31</sup>P MRSI experiments produced high-quality spectra in the cerebrum gray and white matter, as well as in the cerebellum. Characteristic phosphorus metabolites related to adenosine triphosphate metabolism and cell membrane turnover were distinguishable across all brain regions. In summary, our results demonstrate the potential of our novel coil for accurate, whole-brain <sup>31</sup>P metabolite quantification.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5178"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-05-08DOI: 10.1002/nbm.5168
Rolf Pohmann, Nikolai I Avdievich, Klaus Scheffler
{"title":"Signal-to-noise ratio versus field strength for small surface coils.","authors":"Rolf Pohmann, Nikolai I Avdievich, Klaus Scheffler","doi":"10.1002/nbm.5168","DOIUrl":"10.1002/nbm.5168","url":null,"abstract":"<p><p>The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T<sub>1</sub> measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B<sub>0</sub> <sup>1.6-2.7</sup>, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B<sub>0</sub> <sup>2.0</sup> dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B<sub>0</sub> <sup>2.1</sup>. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5168"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-05-22DOI: 10.1002/nbm.5180
Ivo T Maatman, Jenni Schulz, Sjoerd Ypma, Kai Tobias Block, Sebastian Schmitter, John J Hermans, Ewoud J Smit, Marnix C Maas, Tom W J Scheenen
{"title":"Free-breathing high-resolution respiratory-gated radial stack-of-stars magnetic resonance imaging of the upper abdomen at 7 T.","authors":"Ivo T Maatman, Jenni Schulz, Sjoerd Ypma, Kai Tobias Block, Sebastian Schmitter, John J Hermans, Ewoud J Smit, Marnix C Maas, Tom W J Scheenen","doi":"10.1002/nbm.5180","DOIUrl":"10.1002/nbm.5180","url":null,"abstract":"<p><p>Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m<sup>2</sup>) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B<sub>1</sub> shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm<sup>3</sup>. Two experienced radiologists rated the image quality and the impact of B<sub>1</sub> inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B<sub>1</sub> inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5180"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-05-24DOI: 10.1002/nbm.5173
Ke Zhang, Simon M F Triphan, Mark O Wielpütz, Christian H Ziener, Mark E Ladd, Heinz-Peter Schlemmer, Hans-Ulrich Kauczor, Oliver Sedlaczek, Felix T Kurz
{"title":"Navigator-based motion compensation for liver BOLD measurement with five-echo SAGE EPI and breath-hold task.","authors":"Ke Zhang, Simon M F Triphan, Mark O Wielpütz, Christian H Ziener, Mark E Ladd, Heinz-Peter Schlemmer, Hans-Ulrich Kauczor, Oliver Sedlaczek, Felix T Kurz","doi":"10.1002/nbm.5173","DOIUrl":"10.1002/nbm.5173","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task.</p><p><strong>Methods: </strong>A five-echo SAGE sequence was developed to quantitatively measure T<sub>2</sub> and T<sub>2</sub>* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T<sub>2</sub> and T<sub>2</sub>* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T<sub>2</sub> and T<sub>2</sub>* were calculated.</p><p><strong>Results: </strong>The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T<sub>2</sub> and T<sub>2</sub>* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T<sub>2</sub> (34.7 ± 0.7 ms) and T<sub>2</sub>* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy.</p><p><strong>Conclusions: </strong>This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5173"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-05-25DOI: 10.1002/nbm.5172
Johannes Forsting, Marian Wächter, Martijn Froeling, Marlena Rohm, Anne-Katrin Güttsches, Alice De Lorenzo, Nicolina Südkamp, Abdulhadi Kocabas, Matthias Vorgerd, Elena Enax-Krumova, Robert Rehmann, Lara Schlaffke
{"title":"Quantitative muscle magnetic resonance imaging in limb-girdle muscular dystrophy type R1 (LGMDR1): A prospective longitudinal cohort study.","authors":"Johannes Forsting, Marian Wächter, Martijn Froeling, Marlena Rohm, Anne-Katrin Güttsches, Alice De Lorenzo, Nicolina Südkamp, Abdulhadi Kocabas, Matthias Vorgerd, Elena Enax-Krumova, Robert Rehmann, Lara Schlaffke","doi":"10.1002/nbm.5172","DOIUrl":"10.1002/nbm.5172","url":null,"abstract":"<p><p>Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m<sup>2</sup>) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5172"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-06-01DOI: 10.1002/nbm.5197
Nicola Casali, Elisa Scalco, Maria Giovanna Taccogna, Fulvio Lauretani, Simone Porcelli, Andrea Ciuni, Alfonso Mastropietro, Giovanna Rizzo
{"title":"Positional contrastive learning for improved thigh muscle segmentation in MR images.","authors":"Nicola Casali, Elisa Scalco, Maria Giovanna Taccogna, Fulvio Lauretani, Simone Porcelli, Andrea Ciuni, Alfonso Mastropietro, Giovanna Rizzo","doi":"10.1002/nbm.5197","DOIUrl":"10.1002/nbm.5197","url":null,"abstract":"<p><p>The accurate segmentation of individual muscles is essential for quantitative MRI analysis of thigh images. Deep learning methods have achieved state-of-the-art results in segmentation, but they require large numbers of labeled data to perform well. However, labeling individual thigh muscles slice by slice for numerous volumes is a laborious and time-consuming task, which limits the availability of annotated datasets. To address this challenge, self-supervised learning (SSL) emerges as a promising technique to enhance model performance by pretraining the model on unlabeled data. A recent approach, called positional contrastive learning, exploits the information given by the axial position of the slices to learn features transferable on the segmentation task. The aim of this work was to propose positional contrastive SSL for the segmentation of individual thigh muscles from MRI acquisitions in a population of elderly healthy subjects and to evaluate it on different levels of limited annotated data. An unlabeled dataset of 72 T1w MRI thigh acquisitions was available for SSL pretraining, while a labeled dataset of 52 volumes was employed for the final segmentation task, split into training and test sets. The effectiveness of SSL pretraining to fine-tune a U-Net architecture for thigh muscle segmentation was compared with that of a randomly initialized model (RND), considering an increasing number of annotated volumes (S = 1, 2, 5, 10, 20, 30, 40). Our results demonstrated that SSL yields substantial improvements in Dice similarity coefficient (DSC) when using a very limited number of labeled volumes (e.g., for <math><mi>S</mi></math> = 1, DSC 0.631 versus 0.530 for SSL and RND, respectively). Moreover, enhancements are achievable even when utilizing the full number of labeled subjects, with DSC = 0.927 for SSL and 0.924 for RND. In conclusion, positional contrastive SSL was effective in obtaining more accurate thigh muscle segmentation, even with a very low number of labeled data, with a potential impact of speeding up the annotation process in clinics.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5197"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-05-14DOI: 10.1002/nbm.5170
Rico Singer, Ina Oganezova, Wanbin Hu, Li Liu, Yi Ding, Huub J M de Groot, Herman P Spaink, A Alia
{"title":"Ultrahigh field diffusion magnetic resonance imaging uncovers intriguing microstructural changes in the adult zebrafish brain caused by Toll-like receptor 2 genomic deletion.","authors":"Rico Singer, Ina Oganezova, Wanbin Hu, Li Liu, Yi Ding, Huub J M de Groot, Herman P Spaink, A Alia","doi":"10.1002/nbm.5170","DOIUrl":"10.1002/nbm.5170","url":null,"abstract":"<p><p>Toll-like receptor 2 (TLR2) belongs to the TLR protein family that plays an important role in the immune and inflammation response system. While TLR2 is predominantly expressed in immune cells, its expression has also been detected in the brain, specifically in microglia and astrocytes. Recent studies indicate that genomic deletion of TLR2 can result in impaired neurobehavioural function. It is currently not clear if the genomic deletion of TLR2 leads to any alterations in the microstructural features of the brain. In the current study, we noninvasively assess microstructural changes in the brain of TLR2-deficient (tlr2<sup>-/-</sup>) zebrafish using state-of-the art magnetic resonance imaging (MRI) methods at ultrahigh magnetic field strength (17.6 T). A significant increase in cortical thickness and an overall trend towards increased brain volumes were observed in young tlr2<sup>-/-</sup> zebrafish. An elevated T<sub>2</sub> relaxation time and significantly reduced apparent diffusion coefficient (ADC) unveil brain-wide microstructural alterations, potentially indicative of cytotoxic oedema and astrogliosis in the tlr2<sup>-/-</sup> zebrafish. Multicomponent analysis of the ADC diffusivity signal by the phasor approach shows an increase in the slow ADC component associated with restricted diffusion. Diffusion tensor imaging and diffusion kurtosis imaging analysis revealed diminished diffusivity and enhanced kurtosis in various white matter tracks in tlr2<sup>-/-</sup> compared with control zebrafish, identifying the microstructural underpinnings associated with compromised white matter integrity and axonal degeneration. Taken together, our findings demonstrate that the genomic deletion of TLR2 results in severe alterations to the microstructural features of the zebrafish brain. This study also highlights the potential of ultrahigh field diffusion MRI techniques in discerning exceptionally fine microstructural details within the small zebrafish brain, offering potential for investigating microstructural changes in zebrafish models of various brain diseases.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5170"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-06-16DOI: 10.1002/nbm.5200
Tyler C Diorio, Vidhya Vijayakrishnan Nair, Neal M Patel, Lauren E Hedges, Vitaliy L Rayz, Yunjie Tong
{"title":"Real-time quantification of in vivo cerebrospinal fluid velocity using the functional magnetic resonance imaging inflow effect.","authors":"Tyler C Diorio, Vidhya Vijayakrishnan Nair, Neal M Patel, Lauren E Hedges, Vitaliy L Rayz, Yunjie Tong","doi":"10.1002/nbm.5200","DOIUrl":"10.1002/nbm.5200","url":null,"abstract":"<p><p>In vivo estimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Current cardiac or respiratory-gated approaches, such as 4D flow magnetic resonance imaging (MRI), cannot capture CSF movement in real time because of limited temporal resolution and, in addition, deteriorate in accuracy at low fluid velocities. Other techniques like real-time phase-contrast-MRI or time-spatial labeling inversion pulse are not limited by temporal averaging but have limited availability, even in research settings. This study aims to quantify the inflow effect of dynamic CSF motion on functional MRI (fMRI) for in vivo, real-time measurement of CSF flow velocity. We considered linear and nonlinear models of velocity waveforms and empirically fit them to fMRI data from a controlled flow experiment. To assess the utility of this methodology in human data, CSF flow velocities were computed from fMRI data acquired in eight healthy volunteers. Breath-holding regimens were used to amplify CSF flow oscillations. Our experimental flow study revealed that CSF velocity is nonlinearly related to inflow effect-mediated signal increase and well estimated using an extension of a previous nonlinear framework. Using this relationship, we recovered velocity from in vivo fMRI signal, demonstrating the potential of our approach for estimating CSF flow velocity in the human brain. This novel method could serve as an alternative approach to quantifying slow flow velocities in real time, such as CSF flow in the ventricular system, thereby providing valuable insights into the glymphatic system's function and its implications for neurological disorders.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5200"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NMR in BiomedicinePub Date : 2024-10-01Epub Date: 2024-06-06DOI: 10.1002/nbm.5195
Sarah M Jacobs, Jeanine J Prompers, Wybe J M van der Kemp, Tijl A van der Velden, Mark Gosselink, Ettore Flavio Meliadò, Hans M Hoogduin, Graeme F Mason, Robin A de Graaf, Corin O Miller, Gerard M Bredael, Anja G van der Kolk, Cezar Alborahal, Dennis W J Klomp, Evita C Wiegers
{"title":"Indirect <sup>1</sup>H-[<sup>13</sup>C] MRS of the human brain at 7 T using a <sup>13</sup>C-birdcage coil and eight transmit-receive <sup>1</sup>H-dipole antennas with a 32-channel <sup>1</sup>H-receive array.","authors":"Sarah M Jacobs, Jeanine J Prompers, Wybe J M van der Kemp, Tijl A van der Velden, Mark Gosselink, Ettore Flavio Meliadò, Hans M Hoogduin, Graeme F Mason, Robin A de Graaf, Corin O Miller, Gerard M Bredael, Anja G van der Kolk, Cezar Alborahal, Dennis W J Klomp, Evita C Wiegers","doi":"10.1002/nbm.5195","DOIUrl":"10.1002/nbm.5195","url":null,"abstract":"<p><p>The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic <sup>1</sup>H-[<sup>13</sup>C] MRS during administration of <sup>13</sup>C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct <sup>13</sup>C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln <sup>1</sup>H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic <sup>1</sup>H-[<sup>13</sup>C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive <sup>13</sup>C-birdcage head coil with eight transmit-receive <sup>1</sup>H-dipole antennas was used together with a 32-channel <sup>1</sup>H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled <sup>13</sup>C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-<sup>13</sup>C]Glu-H4 and [4-<sup>13</sup>C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-<sup>13</sup>C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-<sup>13</sup>C]Glu and [4,5-<sup>13</sup>C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-<sup>13</sup>C]Glu and [4,5-<sup>13</sup>C]Gln could be clearly separated. We have shown that with our setup indirect dynamic <sup>1</sup>H-[<sup>13</sup>C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5195"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}