Maxime Yon, Omar Narvaez, Daniel Topgaard, Alejandra Sierra
{"title":"In vivo rat brain mapping of multiple gray matter water populations using nonparametric D(ω)-R<sub>1</sub>-R<sub>2</sub> distributions MRI.","authors":"Maxime Yon, Omar Narvaez, Daniel Topgaard, Alejandra Sierra","doi":"10.1002/nbm.5286","DOIUrl":null,"url":null,"abstract":"<p><p>Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.1 ms/μm<sup>2</sup> enabled by the use of modulated gradient waveforms and combined with multislice high-resolution and low-distortion echo planar imaging acquisition with segmented and full reversed phase-encode acquisition. This framework allows the identification of diffusion ω-dependence in the rat cerebellum and olfactory bulb gray matter (GM), and the parameter distributions are shown to resolve two water pools in the cerebellum GM with different diffusion coefficients, shapes, ω-dependence, relaxation rates, and spatial repartition whose attribution to specific microstructure could modify the current understanding of the origin of restriction in GM.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5286"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5286","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.1 ms/μm2 enabled by the use of modulated gradient waveforms and combined with multislice high-resolution and low-distortion echo planar imaging acquisition with segmented and full reversed phase-encode acquisition. This framework allows the identification of diffusion ω-dependence in the rat cerebellum and olfactory bulb gray matter (GM), and the parameter distributions are shown to resolve two water pools in the cerebellum GM with different diffusion coefficients, shapes, ω-dependence, relaxation rates, and spatial repartition whose attribution to specific microstructure could modify the current understanding of the origin of restriction in GM.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.