Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao
{"title":"利用化学位移编码核磁共振成像评估腹部脂肪组织的脂肪酸组成:与糖尿病的关系","authors":"Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao","doi":"10.1002/nbm.5290","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (F<sub>mufa</sub>) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (F<sub>sfa</sub>) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, F<sub>mufa</sub> and F<sub>sfa</sub> of visceral fat were independent factors for T2DM. Furthermore, F<sub>sfa</sub>-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, F<sub>mufa</sub>-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5290"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes.\",\"authors\":\"Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao\",\"doi\":\"10.1002/nbm.5290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (F<sub>mufa</sub>) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (F<sub>sfa</sub>) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, F<sub>mufa</sub> and F<sub>sfa</sub> of visceral fat were independent factors for T2DM. Furthermore, F<sub>sfa</sub>-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, F<sub>mufa</sub>-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5290\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5290\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes.
This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (Fmufa) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (Fsfa) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, Fmufa and Fsfa of visceral fat were independent factors for T2DM. Furthermore, Fsfa-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, Fmufa-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.