利用深度学习自动检测脑部 MR 图像中的运动伪影。

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI:10.1002/nbm.5276
Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, Dotun Oyekunle, Godwin Ogbole, John Thomas Vaughan, Sairam Geethanath
{"title":"利用深度学习自动检测脑部 MR 图像中的运动伪影。","authors":"Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, Dotun Oyekunle, Godwin Ogbole, John Thomas Vaughan, Sairam Geethanath","doi":"10.1002/nbm.5276","DOIUrl":null,"url":null,"abstract":"<p><p>Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T<sub>1</sub>-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5276"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated detection of motion artifacts in brain MR images using deep learning.\",\"authors\":\"Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, Dotun Oyekunle, Godwin Ogbole, John Thomas Vaughan, Sairam Geethanath\",\"doi\":\"10.1002/nbm.5276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T<sub>1</sub>-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5276\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5276\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在磁共振成像(MRI)数据采集过程中,质量评估(包括检查图像是否存在伪影)是确保数据质量和下游分析或解读成功的关键步骤。本研究展示了一种深度学习(DL)模型,用于检测 T1 加权脑图像中的刚性运动。我们利用在运动合成数据上训练的二维卷积神经网络(CNN)进行了三类分类,并在公开的回顾性和前瞻性数据集上进行了测试。Grad-CAM 热图能够识别故障模式,并对模型的结果进行解释。在六个运动模拟回顾数据集上,该模型的平均精确度和召回率分别达到 85% 和 80%。此外,该模型在前瞻性数据集上的分类与放射科医生的标注显示出 93% 的一致性,与指示运动的图像质量指标--平均边缘强度相比,两者之间存在较强的反相关性(-0.84)。该模型旨在实现运动伪影的在线自动检测,加快耗时的质量评估(QA)过程,并增强现场的专业知识,尤其适用于当地磁共振知识匮乏的低资源环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated detection of motion artifacts in brain MR images using deep learning.

Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T1-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信