Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, Dotun Oyekunle, Godwin Ogbole, John Thomas Vaughan, Sairam Geethanath
{"title":"利用深度学习自动检测脑部 MR 图像中的运动伪影。","authors":"Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, Dotun Oyekunle, Godwin Ogbole, John Thomas Vaughan, Sairam Geethanath","doi":"10.1002/nbm.5276","DOIUrl":null,"url":null,"abstract":"<p><p>Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T<sub>1</sub>-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5276"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated detection of motion artifacts in brain MR images using deep learning.\",\"authors\":\"Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, Dotun Oyekunle, Godwin Ogbole, John Thomas Vaughan, Sairam Geethanath\",\"doi\":\"10.1002/nbm.5276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T<sub>1</sub>-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5276\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5276\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Automated detection of motion artifacts in brain MR images using deep learning.
Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T1-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.