Claudio M. Privitera , Sean Noah , Thom Carney , Stanley A. Klein , Agatha Lenartowicz , Stephen P. Hinshaw , James T. McCracken , Joel T. Nigg , Sarah L. Karalunas , Rory C. Reid , Mercedes Oliva , Samantha S. Betts , Gregory V. Simpson
{"title":"Pupillary unrest is attenuated in attention deficit hyperactivity disorder (ADHD)","authors":"Claudio M. Privitera , Sean Noah , Thom Carney , Stanley A. Klein , Agatha Lenartowicz , Stephen P. Hinshaw , James T. McCracken , Joel T. Nigg , Sarah L. Karalunas , Rory C. Reid , Mercedes Oliva , Samantha S. Betts , Gregory V. Simpson","doi":"10.1016/j.neulet.2025.138148","DOIUrl":"10.1016/j.neulet.2025.138148","url":null,"abstract":"<div><div>We investigated the phenomenon of pupillary unrest in individuals with Attention Deficit Hyperactivity Disorder (ADHD) compared to neurotypical controls. We measured the power of low-frequency pupil oscillations under two experimental conditions: a passive condition with minimal distraction and a resting condition with no distraction. The study included 76 adult participants (42 controls and 34 with ADHD) aged 18–40. The results show that individuals with ADHD exhibit reduced power in pupillary oscillations, suggesting a suppression of general catecholaminergic activity. The nature of the experiment indicates that this suppression is endemic in the background and independent of the visual task or the ongoing cognitive effort. This finding is consistent with our previous observations of reduced pupil dilations in ADHD during active tasks <span><span>[1]</span></span> and provide basic insights for future research aimed at developing and refining a psychophysical paradigm that could serve as a biomarker to enhance ADHD evaluation and classification.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"851 ","pages":"Article 138148"},"PeriodicalIF":2.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens D. Mikkelsen , Phoebe Linde-Atkins , Burcu A. Pazarlar
{"title":"Higher level of [3H]UCB-J binding in ApoE Ɛ4 allele carriers with Alzheimer disease","authors":"Jens D. Mikkelsen , Phoebe Linde-Atkins , Burcu A. Pazarlar","doi":"10.1016/j.neulet.2025.138135","DOIUrl":"10.1016/j.neulet.2025.138135","url":null,"abstract":"<div><div>Neuronal and synapse losses are seen under the progression of Alzheimer’s disease (AD). Accordingly, the binding to the synaptic vesicle glycoprotein 2A (SV2A) using the selective radioligand [<sup>3</sup>H]UCB-J was found to be reduced in frontal cortex from patients with AD. We report here that the reduction in SV2A binding is highly significant only in patients not carrying the ApoE ɛ4 allele. By contrast, those individuals with one or two ApoE ɛ4 alleles had SV2A binding levels not different from controls. Because ApoE4 is an important genetic risk and strongly linked to late-onset AD, this study raises an interesting new and unexpected association to SV2A, synapse loss, and function.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"849 ","pages":"Article 138135"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jahangir Sajjad , Jennifer Morael , Thieza G. Melo , Tara Foley , Amy Murphy , James Keane , Jelena Popov , Catherine Stanton , Timothy G. Dinan , Gerard Clarke , John F. Cryan , James M. Collins , Siobhain M. O’Mahony
{"title":"Differential cortical aspartate uptake across the oestrous cycle is associated with changes in gut microbiota in Wistar-Kyoto rats","authors":"Jahangir Sajjad , Jennifer Morael , Thieza G. Melo , Tara Foley , Amy Murphy , James Keane , Jelena Popov , Catherine Stanton , Timothy G. Dinan , Gerard Clarke , John F. Cryan , James M. Collins , Siobhain M. O’Mahony","doi":"10.1016/j.neulet.2024.138096","DOIUrl":"10.1016/j.neulet.2024.138096","url":null,"abstract":"<div><div>Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic–pituitary–adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling. Here, the functional activity of excitatory amino acid transporters (EAATs) in the anterior cingulate cortex (ACC) and lumbosacral spinal cord of male and female Wistar-Kyoto rats, an animal model of comorbid visceral hypersensitivity and enhanced stress responsivity, was investigated across the oestrous cycle. Correlations between the gut microbiota and changes in the functional activity of the central glutamatergic system were also investigated.</div><div>EAAT function in the lumbosacral spinal cord was similar between males and females across the oestrous cycle. EAAT function was higher in the ACC of dioestrus females compared to proestrus and oestrus females. In males, aspartate uptake in the ACC positively correlated with <em>Bacteroides</em>, while aspartate uptake in the spinal cord positively correlated with the relative abundance of <em>Lachnospiraceae NK4A136</em>. Positive associations with aspartate uptake in the spinal cord were also observed for <em>Alistipes</em> and <em>Bifidobacterium</em> during oestrus, and <em>Eubacterium coprostanoligenes</em> during proestrus. <em>Clostridium sensu stricto1</em> was negatively associated with aspartate uptake in the ACC in males and dioestrus females.</div><div>These data indicate that glutamate metabolism in the ACC is oestrous stage-dependent and that short-chain fatty acid-producing bacteria are positively correlated with aspartate uptake in males and during specific oestrous stages in females.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"847 ","pages":"Article 138096"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ronyson Kharkongor, JenishaChris Stephen, UlfathTasneem Khan, Rameshkumar Radhakrishnan
{"title":"Exposure to an enriched environment and fucoidan supplementation ameliorate learning and memory function in rats subjected to global cerebral ischemia","authors":"Ronyson Kharkongor, JenishaChris Stephen, UlfathTasneem Khan, Rameshkumar Radhakrishnan","doi":"10.1016/j.neulet.2024.138094","DOIUrl":"10.1016/j.neulet.2024.138094","url":null,"abstract":"<div><div>An enriched environment (EE) constitutes a proficient strategy that instigates social, cognitive, and motor faculties, fostering healing and heightening learning and memory function after ischemia, while fucoidan derived from brown seaweed encompasses a diverse array of bioactivities and is known to possess neuroprotective properties. This study aims to investigate the effectiveness of combining fucoidan and EE in a rat model of vascular dementia to overcome cognitive challenges. The rats were randomly assigned as Sham, Lesion − 4-vessel occlusion (4VO) i.e., transient global cerebral ischemia (tGCI), 4VO + F50mg/kg, 4VO + EE, and 4VO + F50mg/kg + EE. At the end of the study periods, the rats were exposed to the Novel object task, T-maze, and the Morris water maze. The profile of hippocampal pyramidal neurons and their dendrites was assessed through the CFV, and Golgi cox stained brain sections. Neuroinflammatory markers (IL-1β, IL-6, NF-κB, TNF-α) and synaptogenic markers (BDNF, SYP, PSD-95) were evaluated through western blot analysis. The levels of oxidative stress marker (LPO) and antioxidants (SOD, CAT, GSH, GST, GPX) in the hippocampus were quantified through biochemical assay. The findings revealed that the cognitive deficits were significantly reduced in both the 4VO + F50mg/kg and 4VO + F50mg/kg + EE treatment groups and inflammatory markers were reduced with increased antioxidant levels and synaptogenic markers when compared with the lesion group. However, through this study, the combination therapy involving fucoidan and exposure to an EE was proven effective in preserving neural integrity and restoring cognitive function against the damage caused by oxidative stress and inflammation following tGCI.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"847 ","pages":"Article 138094"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinming Liu , Yong Wang , Hong Sun , Daoyun Lei , Jufeng Liu , Yuanhui Fei , Chunhui Wang , Chao Han
{"title":"Resveratrol ameliorates postoperative cognitive dysfunction in aged mice by regulating microglial polarization through CX3CL1/CX3CR1 signaling axis","authors":"Jinming Liu , Yong Wang , Hong Sun , Daoyun Lei , Jufeng Liu , Yuanhui Fei , Chunhui Wang , Chao Han","doi":"10.1016/j.neulet.2024.138089","DOIUrl":"10.1016/j.neulet.2024.138089","url":null,"abstract":"<div><div>Postoperative cognitive dysfunction (POCD) is a common cognitive challenge faced by older adults. One of the key contributors to the development of POCD is neuroinflammation induced by microglia. Resveratrol has emerged as a promising candidate for the prevention of cognitive decline. Previous studies have demonstrated its potential in alleviating cognitive deterioration, yielding encouraging results. Nonetheless, the mechanism of resveratrol improving cognitive function remains unclear. Therefore, we assessed the effect of resveratrol in both aged POCD model mice and BV2 cells on CX3CL1/CX3CR1 axis, a critical signaling pathway mediating microglial activity. Both in vitro and in vivo experiments have revealed that pre-administration of resveratrol not only mitigates cognitive deficits but also significantly reduces the levels of inflammatory cytokines. Additionally, it enhanced the expression of SIRT1 and CX3CR1 within the hippocampal region. We also evaluated the impact of resveratrol on CX3CR1 siRNA transfected BV2 cells. Delete of CX3CR1 reversed the preventive role of resveratrol. Our findings implied that resveratrol might inhibit microglial activation and improve cognition by mediating CX3CL1/CX3CR1 signaling.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"847 ","pages":"Article 138089"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thalamo-insular cortex connections in the rat and human","authors":"Mazhar Özkan , Damlasu Altınöz , Elif Erkan , Yasin Celal Güneş , Oktay Algın , Safiye Çavdar","doi":"10.1016/j.neulet.2024.138111","DOIUrl":"10.1016/j.neulet.2024.138111","url":null,"abstract":"<div><div>The insular cortex (ICx) has a role in large a variety of functions. Thalamus plays an important role in modulating cortical functions. The present study aims to show thalamic-ICx connections using the fluoro-gold (FG) tracing method in rats and diffusion tensoring-based tractography (DTI) in humans. Wistar albino rats were pressure injected with the FG tracer into the anterior and posterior ICx. The DTI data were obtained from the Human Connectome Project database. Our findings showed that the thalamic-ICx connections were strictly ipsilateral in the rat, however, bilateral connections were present in humans. The anterior ICx was connected to the paraventricular, centromedial, paracentral, centrolateral, ventral posteromedial, and medial geniculate thalamic nuclei. The posterior ICx was connected to the centromedian, parafasicular, renuence, lateral, posterior, ventral posteromedial, and medial geniculate thalamic nuclei. The DTI in humans corresponded with the results of the experimental study on rats. The results of the current study may provide an understanding of how thalamic nuclei may contribute to higher-order ICx functions. The ipsilateral connections in the rat and bilateral in humans may provide insights into anatomical evolution and functional differences of the ICx circuit in humans and rats. Further, stimulation of the thalamus can be a potential target for treating or modulating ICx functions such as anxiety, depression, and certain chronic pain conditions.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"847 ","pages":"Article 138111"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jisu Elsa Jacob , Sreejith Chandrasekharan , Thomas Iype , Ajith Cherian
{"title":"Unveiling encephalopathy signatures: A deep learning approach with locality-preserving features and hybrid neural network for EEG analysis","authors":"Jisu Elsa Jacob , Sreejith Chandrasekharan , Thomas Iype , Ajith Cherian","doi":"10.1016/j.neulet.2025.138146","DOIUrl":"10.1016/j.neulet.2025.138146","url":null,"abstract":"<div><div>EEG signals exhibit spatio-temporal characteristics due to the neural activity dispersion in space over the brain and the dynamic temporal patterns of electrical activity in neurons. This study tries to effectively utilize the spatio-temporal nature of EEG signals for diagnosing encephalopathy using a combination of novel locality preserving feature extraction using Local Binary Patterns (LBP) and a custom fine-tuned Long Short-Term Memory (LSTM) neural network. A carefully curated primary EEG dataset is used to assess the effectiveness of the technique for treatment of encephalopathies. EEG signals of all electrodes are mapped onto a spatial matrix from which the custom feature extraction method isolates spatial features of the signals. These spatial features are further given to the neural network, which learns to combine the spatial information with temporal dynamics summarizing pertinent details from the raw EEG data. Such a unified representation is key to perform reliable disease classification at the output layer of the neural network, leading to a robust classification system, potentially providing improved diagnosis and treatment. The proposed method shows promising potential for enhancing the automated diagnosis of encephalopathy, with a remarkable accuracy rate of 90.5%. To the best of our knowledge, this is the first attempt to compress and represent both spatial and temporal features into a single vector for encephalopathy detection, simplifying visual diagnosis and providing a robust feature for automated predictions. This advancement holds significant promise for ensuring early detection and intervention strategies in the clinical environment, which in turn enhances patient care.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"849 ","pages":"Article 138146"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dopamine D2 receptor antagonists alter autophosphorylation of focal adhesion kinases in the mouse forebrain in vivo","authors":"Li-Min Mao , Tayyibah Mahmood , John Q. Wang","doi":"10.1016/j.neulet.2025.138145","DOIUrl":"10.1016/j.neulet.2025.138145","url":null,"abstract":"<div><div>Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase expressed in neurons of the developing and adult brain in addition to non-neuronal cells. Activation of FAK is initiated by autophosphorylation of the kinase at tyrosine 397 (Y397). Active FAK transmits extracellular signals inside neurons to integrate cytoskeletal rearrangements and modulate synaptic transmission and plasticity. Here we investigated roles of dopamine receptors, i.e., G<sub>αs/olf</sub>-coupled D<sub>1</sub> and G<sub>αi/o</sub>-coupled D<sub>2</sub> subtypes, in regulation of FAK autophosphorylation in two major dopamine-innervated areas of the mouse brain <em>in vivo</em>. We found that acute systemic administration of a dopamine D<sub>1</sub> or D<sub>2</sub> receptor agonist had no effect on basal FAK autophosphorylation at Y397 in the striatum and medial prefrontal cortex (mPFC). Similarly, a D<sub>1</sub> receptor antagonist did not alter striatal and cortical Y397 phosphorylation. However, acute injection of a D<sub>2</sub> receptor antagonist (eticlopride or haloperidol) induced a marked increase in Y397 phosphorylation in the striatum and mPFC. The eticlopride-induced Y397 phosphorylation can be seen in the two striatal subdivisions, the caudate putamen and nucleus accumbens, and was induced at two effective doses (0.1 and 0.5 mg/kg). All drug treatments caused insignificant changes in cellular FAK protein expression. These results reveal an existence of a tonic inhibitory tone of dopamine D<sub>2</sub> receptors over basal FAK autophosphorylation in the mouse striatum and mPFC.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"850 ","pages":"Article 138145"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Recatalá , Pablo Hidalgo , Juan Nàcher , José Miguel Blasco-Ibáñez , Carlos Crespo , Emilio Varea
{"title":"Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II","authors":"Marina Recatalá , Pablo Hidalgo , Juan Nàcher , José Miguel Blasco-Ibáñez , Carlos Crespo , Emilio Varea","doi":"10.1016/j.neulet.2024.138099","DOIUrl":"10.1016/j.neulet.2024.138099","url":null,"abstract":"<div><div>Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3. In the present study, we wanted to check if the neural maturation in layer II piriform cortex is also mediated by 5-HT3. In the piriform cortex, in contrast to the hippocampus, there is no postnatal neurogenesis. All immature neurons (PSA-NCAM immunoreactive) were originated prenatally. Immature cells in this area begin as small cells (type I cells) that then mature to larger cells (type II cells), and finally, mature to principal cells (PSA-NCAM immunonegative). To study the role of 5HT3 in this population, we first demonstrated the presence of 5HT3 receptors on both type I and II cells. Then we increased serotonin concentration using chronic fluoxetine administration, producing a reduction in the number of type I cells and an increment of type II cells but not an induction in the final stage of maturation to principal cells, as shown by the higher number of immature cells than in controls. This effect was blocked by ondansetron (a 5 HT3 antagonist). In conclusion, serotonin induces the progression from type I cells to type II cells but not from the later to mature PSA-NCAM immunonegative neurons. This effect is mediated by 5-HT3 receptors present in the immature cells.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"847 ","pages":"Article 138099"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Fan , Jumian Feng , Lin Yang , Qin Zhang , Huaqiu Li
{"title":"Remimazolam alleviates sleep deprivation induced anxiety-like behaviors via regulating the STING pathway","authors":"Jun Fan , Jumian Feng , Lin Yang , Qin Zhang , Huaqiu Li","doi":"10.1016/j.neulet.2024.138095","DOIUrl":"10.1016/j.neulet.2024.138095","url":null,"abstract":"<div><div>Sleep loss becomes a major problem in modern life and increases the incidence of anxiety disorders. Benzodiazepines are the most commonly used anxiolytic medications. Remimazolam is an ultra-short-acting benzodiazepine, which has been shown to reduce the preoperative anxiety levels in patients. However, the effects on anxiety-like behaviors caused by chronic sleep deprivation (CSD) and the underlying molecular mechanisms remain unclear. Here, we found that administration of remimazolam can effectively alleviate anxiety-like behaviors induced by CSD. Furthermore, remimazolam can significantly preserve the sleep deprivation-induced deficits in neuronal calcium activity in CA1 of the hippocampus. In addition, stimulator of interferon genes (STING) was activated in CA1 after CSD, while remimazolam was sufficient to block the activation of the STING pathway. Further study showed that inhibiting the activation of STING also effectively alleviates the anxiety symptoms induced by CSD. Overall, our research offers new insight and a promising therapeutic agent for the anxiety disorders caused by sleep deprivation.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"847 ","pages":"Article 138095"},"PeriodicalIF":2.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}