Neuroscience Letters最新文献

筛选
英文 中文
Chronic administration of 1,3-di-o-tolylguanidyne induces catalepsy and reduces immobility responses by clamping and grasping in Wistar rat, evaluation in vivo and in silico 长期给药1,3-二-邻多聚胍通过Wistar大鼠夹紧和抓握诱导猝倒和减少不动反应,体内和计算机评价
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-05-16 DOI: 10.1016/j.neulet.2025.138267
Dulce E. Nicolás-Álvarez , José Luna-Muñoz , Vicente Sandoval-Herrera , Martha A. Estrada-Silva , Javier Cruz-Rodríguez , Nabil I. Luna-Viramontes , Brenda Granados-Rivas , Gabriela Silva-Luna , Jimena Natalia Torres-Mendoza , Hiram Tendilla-Beltrán , Gonzalo Flores , Linda Garcés-Ramírez , Fidel de la Cruz-López
{"title":"Chronic administration of 1,3-di-o-tolylguanidyne induces catalepsy and reduces immobility responses by clamping and grasping in Wistar rat, evaluation in vivo and in silico","authors":"Dulce E. Nicolás-Álvarez ,&nbsp;José Luna-Muñoz ,&nbsp;Vicente Sandoval-Herrera ,&nbsp;Martha A. Estrada-Silva ,&nbsp;Javier Cruz-Rodríguez ,&nbsp;Nabil I. Luna-Viramontes ,&nbsp;Brenda Granados-Rivas ,&nbsp;Gabriela Silva-Luna ,&nbsp;Jimena Natalia Torres-Mendoza ,&nbsp;Hiram Tendilla-Beltrán ,&nbsp;Gonzalo Flores ,&nbsp;Linda Garcés-Ramírez ,&nbsp;Fidel de la Cruz-López","doi":"10.1016/j.neulet.2025.138267","DOIUrl":"10.1016/j.neulet.2025.138267","url":null,"abstract":"<div><div>Catalepsy, used to assess antipsychotic effects in animal models, involves sustained abnormal postures and resistance to displacement through balance reflexes. In contrast, immobility is a passive, stimulus-induced state marked by reduced movement and responsiveness, it can be triggered by a variety of stimuli. We found that a single administration of 1,3-di-o-tolylguanidine (DTG) had no effect on catalepsy, whereas daily administration induced cataleptic behavior by day 21. DTG reduced dorsal (grasping) and clamping immobility from the first day of administration, and this reduction persisted through day 21. Our findings support the potential use of sigma receptors as targets for antipsychotic drug development. Molecular dynamics studies indicate that DTG exhibits high stability and binding affinity for sigma-1 and dopamine D2 receptors, which may underlie its behavioral effects. Given the well-documented cataleptic properties of haloperidol, we compared and discussed both the molecular dynamics and previously reported behavioral effects of DTG in relation to haloperidol.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138267"},"PeriodicalIF":2.5,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144071604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tripterygium-derived celastrol inhibits 5-HT3A receptors via key residue interactions: A comparative electrophysiological and docking study 雷公藤衍生的雷公藤红素通过关键残基相互作用抑制5-HT3A受体:比较电生理和对接研究
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-05-15 DOI: 10.1016/j.neulet.2025.138265
Hye Duck Yeom , Jihwon Yun , Chaewon Seo , Mee-Hyun Lee , Gihyun Lee , Junho H Lee
{"title":"Tripterygium-derived celastrol inhibits 5-HT3A receptors via key residue interactions: A comparative electrophysiological and docking study","authors":"Hye Duck Yeom ,&nbsp;Jihwon Yun ,&nbsp;Chaewon Seo ,&nbsp;Mee-Hyun Lee ,&nbsp;Gihyun Lee ,&nbsp;Junho H Lee","doi":"10.1016/j.neulet.2025.138265","DOIUrl":"10.1016/j.neulet.2025.138265","url":null,"abstract":"<div><div>This study examines the effects of three Tripterygium wilfordii compounds—celastrol, triptolide, and triptonide—on 5-HT3A receptors. Using two-electrode voltage-clamp recordings, we found all three compounds reversibly and concentration-dependently inhibited 5-HT-induced inward currents (I<sub>5-HT</sub>), with celastrol showing the strongest inhibition (∼83 % at 100 µM) compared to triptolide (∼40 %) and triptonide (∼30 %) at 300 µM. Their voltage- and use-independent inhibition suggests they are not open-channel blockers. Further molecular docking and mutational analysis revealed celastrol binds to K127 and Y114, with mutations at these sites significantly reducing its inhibitory effect. Overall, celastrol, triptolide, and triptonide may suppress hyperactive gut signaling via 5-HT3A inhibition, with celastrol emerging as a promising therapeutic candidate.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138265"},"PeriodicalIF":2.5,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144071603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microinjection of brain-derived neurotrophic factor into the dorsal hippocampus alleviates cognitive dysfunction and increases hippocampal cell proliferation in olfactory bulbectomized mice 海马背侧微量注射脑源性神经营养因子可减轻嗅球化小鼠认知功能障碍,促进海马细胞增殖
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-05-15 DOI: 10.1016/j.neulet.2025.138257
Jinichi Isono , Osamu Nakagawasai , Kohei Takahashi , Wataru Nemoto , Koichi Tan-No
{"title":"Microinjection of brain-derived neurotrophic factor into the dorsal hippocampus alleviates cognitive dysfunction and increases hippocampal cell proliferation in olfactory bulbectomized mice","authors":"Jinichi Isono ,&nbsp;Osamu Nakagawasai ,&nbsp;Kohei Takahashi ,&nbsp;Wataru Nemoto ,&nbsp;Koichi Tan-No","doi":"10.1016/j.neulet.2025.138257","DOIUrl":"10.1016/j.neulet.2025.138257","url":null,"abstract":"<div><div>Patients with depression show cognitive dysfunction and experience decreased motivation, which interfere with their daily lives. However, whether brain-derived neurotrophic factor (BDNF) in the dorsal hippocampus is involved in depression-associated cognitive deficits is unclear. In this study, olfactory bulbectomized mice, used as a model of depression, showed cognitive dysfunction in the Y-maze and passive avoidance tests and reduction of cell proliferation in the hippocampal dentate gyrus. Microinjection of BDNF into the dorsal hippocampus alleviated the cognitive dysfunction induced by the olfactory bulbectomy and increased hippocampal cell proliferation. This study suggests that BDNF injection in the dorsal hippocampus modulates cognitive functions with cell proliferation in the hippocampal dentate gyrus, thus supporting the importance of hippocampal BDNF in cognitive impairment accompanying depression.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138257"},"PeriodicalIF":2.5,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144071605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-high dilution medicines can modulate dopaminergic molecular targets and ΔFosB in the Nucleus accumbens preventing morphine reacquisition in rats 超高稀释药物可调节大鼠伏隔核多巴胺能分子靶点和ΔFosB,防止吗啡再获得
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-05-14 DOI: 10.1016/j.neulet.2025.138256
Murilo Barboza Fontoura , Jessica Leandra Oliveira da Rosa , Domenika Rubert Rossato , Leana Eduarda Mezzomo de Souza , Mustafa Munir Mustafa Dahleh , Marina Prigol , Gustavo Petri Guerra , Hecson Jesser Segat , Marilise Escobar Burger
{"title":"Ultra-high dilution medicines can modulate dopaminergic molecular targets and ΔFosB in the Nucleus accumbens preventing morphine reacquisition in rats","authors":"Murilo Barboza Fontoura ,&nbsp;Jessica Leandra Oliveira da Rosa ,&nbsp;Domenika Rubert Rossato ,&nbsp;Leana Eduarda Mezzomo de Souza ,&nbsp;Mustafa Munir Mustafa Dahleh ,&nbsp;Marina Prigol ,&nbsp;Gustavo Petri Guerra ,&nbsp;Hecson Jesser Segat ,&nbsp;Marilise Escobar Burger","doi":"10.1016/j.neulet.2025.138256","DOIUrl":"10.1016/j.neulet.2025.138256","url":null,"abstract":"<div><div>Addiction is a recurring disease that constitutes a significant public health issue, particularly evident in the global opioid crisis involving substances like morphine (MORPH). Reestablishing to opioid use poses a major obstacle to successful detoxification treatment, as many individuals return to drug use after withdrawal. Therefore, given that drug addiction involves emotional, social, and physical factors, there is a necessity to explore integrative medicine approaches, including ultra-high dilution medicines such as isotherapic (ISO) and organotherapic (ORG) treatments. This integrative approach holds promising potential in addressing drug addiction, as frequent reinstatement to addictive substances entail comprehensive symptoms. In our study following the MORPH conditioned place preference (CPP) paradigm, rats were treated with ISO or ORG for 14 days during MORPH-CPP extinction and subsequently challenged with the drug to assess MORPH-CPP reacquisition. The findings confirmed the hedonic effects of MORPH in the CPP, which also increased D1- and D3-R, DAT, and ΔFosB immunoreactivity in the <em>Nucleus accumbens</em> (NAc). Conversely, both ISO and ORG prevented MORPH-CPP reestablishing, whereas ORG treatment was associated with increased D2- and decreased D3-R levels. Both ORG and ISO increased DAT levels and decreased D1-R and ΔFosB, thus restoring the molecular neuromodulation induced by MORPH. To our knowledge, this study represents the first demonstration of the beneficial influence of ultra-high dilution medicines as a promising treatment for opioid use disorder. This finding is particularly relevant as these medicines are not associated with toxicity or undesirable side effects. Clinical studies are warranted to validate their efficacy in rehabilitation centers for drug use disorder.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138256"},"PeriodicalIF":2.5,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144071606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of repetition and estrous cycle on behavioral tests in female ICR mice 重复和发情周期对雌性ICR小鼠行为测试的影响
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-05-10 DOI: 10.1016/j.neulet.2025.138253
Michiyo Maruyama
{"title":"Effects of repetition and estrous cycle on behavioral tests in female ICR mice","authors":"Michiyo Maruyama","doi":"10.1016/j.neulet.2025.138253","DOIUrl":"10.1016/j.neulet.2025.138253","url":null,"abstract":"<div><div>The open field test (OF) and elevated plus maze test (EPM) are widely used behavioral assessment methods for evaluating anxiety-like behaviors in rodents based on their spontaneous activity. These tests are commonly used to screen anxiolytic compounds. Repeated trials are often required to assess the efficacy of pharmacological treatments. Previous studies suggested that the number of experimental trials can influence various parameters in male animals. However, the knowledge of the effects of repeated trials on female mice is limited. Here, I report the effects of repeated testing on behavioral parameters in female ICR mice during the OF and EPM. The results showed that the number of trial repetitions influenced several behavioral parameters, consistent with previous findings in males. In contrast, the female-specific estrous cycle had a smaller effect. Overall, this study provides valuable insights for designing behavioral experiments involving female animals.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138253"},"PeriodicalIF":2.5,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143947614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal exercise during pregnancy: Sex-specific impacts on offspring memory and maternal deprivation effects 怀孕期间的母亲运动:对后代记忆和母亲剥夺效应的性别特异性影响
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-04-28 DOI: 10.1016/j.neulet.2025.138252
Guilherme Salgado Carrazoni, Pâmela B. Mello-Carpes
{"title":"Maternal exercise during pregnancy: Sex-specific impacts on offspring memory and maternal deprivation effects","authors":"Guilherme Salgado Carrazoni,&nbsp;Pâmela B. Mello-Carpes","doi":"10.1016/j.neulet.2025.138252","DOIUrl":"10.1016/j.neulet.2025.138252","url":null,"abstract":"<div><div>Maternal deprivation (MD) is a well-established paradigm used to study the effects of early-life stress on offspring brain development and behavior, particularly memory. Maternal exercise (ME) during pregnancy has been shown to influence offspring brain development and behavior. Our study examined whether ME protocols—stop, start, reduce, or maintain running during pregnancy—could protect offspring from MD-induced memory deficits and impact hippocampal oxidative balance. Initially, adult Wistar female rats were divided into five groups: non-exercised mothers (NE), mothers who exercised only before pregnancy (PRE), mothers who exercised before and reduced the intensity during pregnancy (RED), mothers who exercised at the same intensity before and during pregnancy (EQUAL), and mothers who started exercise during pregnancy (GEST). After delivery, the groups were subdivided into control (CT) and MD. At 90 days of age, the offspring underwent an object recognition (OR) memory test, and hippocampal lipid peroxidation and catalase (CAT) levels were measured. MD-induced memory deficits in male but not female offspring. Only the male PRE group showed a memory deficit, while all other exercise protocols prevented the MD-induced deficits. MD did not affect hippocampal cell membrane peroxidation, and PRE and EQUAL protocols increased catalase levels compared to NE + CT controls. Our results highlight that maintaining or starting exercise during pregnancy mitigates memory deficits induced by MD, particularly in male offspring.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"856 ","pages":"Article 138252"},"PeriodicalIF":2.5,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Over-expression of α-synuclein 98 triggers intracellular oxidative stress and enhances susceptibility to rotenone" [Neurosci. Lett. 491 (2011) 148-152]. “α-突触核蛋白98的过度表达引发细胞内氧化应激并增强对鱼藤酮的易感性”的更正[神经科学]。《社会科学》,2011年第1期,第148-152页。
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-04-21 DOI: 10.1016/j.neulet.2025.138238
Kai-Li Ma, Yu-He Yuan, Lian-Kun Song, Ning Han, Nai-Hong Chen
{"title":"Corrigendum to \"Over-expression of α-synuclein 98 triggers intracellular oxidative stress and enhances susceptibility to rotenone\" [Neurosci. Lett. 491 (2011) 148-152].","authors":"Kai-Li Ma, Yu-He Yuan, Lian-Kun Song, Ning Han, Nai-Hong Chen","doi":"10.1016/j.neulet.2025.138238","DOIUrl":"https://doi.org/10.1016/j.neulet.2025.138238","url":null,"abstract":"","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138238"},"PeriodicalIF":2.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144030176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal expression of Nischarin in developing rat brain mediates neuronal migration via the PAK1/LIMK1/cofilin pathway Nischarin在发育大鼠脑中的时空表达通过PAK1/LIMK1/cofilin通路介导神经元迁移
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-04-20 DOI: 10.1016/j.neulet.2025.138251
Ruyi Zhang , Hangdi Chen , Kai Guo , Zhihao Bai , Jie Huang , Xiong Zhang , Yuemin Ding
{"title":"Spatiotemporal expression of Nischarin in developing rat brain mediates neuronal migration via the PAK1/LIMK1/cofilin pathway","authors":"Ruyi Zhang ,&nbsp;Hangdi Chen ,&nbsp;Kai Guo ,&nbsp;Zhihao Bai ,&nbsp;Jie Huang ,&nbsp;Xiong Zhang ,&nbsp;Yuemin Ding","doi":"10.1016/j.neulet.2025.138251","DOIUrl":"10.1016/j.neulet.2025.138251","url":null,"abstract":"<div><div>Nischarin, a cytoplasmic scaffold protein, plays a crucial role in modulating cell morphology and function. Our prior investigations revealed its high expression in certain areas of the adult rat brain. Yet, the intricate spatiotemporal dynamics of Nischarin expression across various stages of rat development, as well as its influence on the nervous system’s functionality, remain unexplored. In this study, we meticulously examined the expression patterns of Nischarin and the phosphorylation profiles of the PAK1/LIMK1/cofilin signaling cascade within the cerebral cortex and hippocampus, spanning from embryonic development through postnatal maturation. Furthermore, we delved into how Nischarin affects the neuronal migration and the underlying mechanisms. Our findings indicated that from postnatal day 1 to 28, there was a consistent increasing trend in both the protein and mRNA levels of Nischarin in the cerebral cortex and hippocampus. Interestingly, the phosphorylation levels of PAK1 and LIMK1 increased briefly at postnatal day 1, and then gradually decreased from postnatal day 21 to 28. Immunocoprecipitation revealed the interaction between endogenous Nischarin and PAK1/LIMK1 in the cerebral cortex. Notably, suppressing Nischarin expression markedly bolstered the migration ability of Neuro-2a cells and concurrently elevated the phosphorylation levels of the PAK1/LIMK1/cofilin signaling pathway. This elevation was effectively counteracted by the PAK1 inhibitor IPA3. Our research suggests that the progressive increase in Nischarin protein expression during development is likely integral to the normal developmental trajectory of the rat brain. This involvement appears to be mediated by Nischarin’s regulation of neuronal migration through modulating the activity of the PAK1/LIMK1/cofilin signaling pathway.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"856 ","pages":"Article 138251"},"PeriodicalIF":2.5,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143894794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithium exacerbates Lafora body formation in the Epm2a-/- Lafora disease mouse model 在Epm2a-/- Lafora病小鼠模型中,锂加剧了Lafora体的形成
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-04-19 DOI: 10.1016/j.neulet.2025.138250
Jun Wu, Tori C. Lynn , Silvia Nitschke, Sharmistha Mitra, Berge A. Minassian
{"title":"Lithium exacerbates Lafora body formation in the Epm2a-/- Lafora disease mouse model","authors":"Jun Wu,&nbsp;Tori C. Lynn ,&nbsp;Silvia Nitschke,&nbsp;Sharmistha Mitra,&nbsp;Berge A. Minassian","doi":"10.1016/j.neulet.2025.138250","DOIUrl":"10.1016/j.neulet.2025.138250","url":null,"abstract":"<div><div>Lafora disease (LD) is a fatal neurodegenerative epilepsy of teenagers due to accumulations of overlong-branched glycogen (Lafora bodies, LBs) and caused by deficient laforin or its interacting partner malin. While how the laforin-malin complex regulates glycogen chain lengths is unknown, it is known that downregulating the glycogen chain-elongating enzyme glycogen synthase prevents LB formation. Lithium is a longstanding treatment for neuropsychiatric diseases. Lithium was recently shown to lead to glycogen synthase phosphorylation (i.e. inhibition) in rat brains through an unknown pathway. We tested whether lithium can prevent LB formation in laforin-deficient LD mice. We found that in these mice lithium leads to glycogen synthase dephosphorylation (i.e. activation), and increased LBs in hearts of 100% and brains of 40% of treated mice. The latter were all sickly compared to the 60% in whose brains LBs did not increase. These results are generally cautionary regarding therapeutic translatability from rodents to humans where basic mechanisms are unknown. Increased LB formation only in frail mice suggests existence of self-perpetuating processes in LD. Finally, lithium clearly influences glycogen metabolism with outcomes similar to disturbances of the laforin-malin complex. Understanding lithium’s action in glycogen metabolism may aid the understanding of the mechanisms of laforin-malin and LD.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"856 ","pages":"Article 138250"},"PeriodicalIF":2.5,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced flavoprotein autofluorescence imaging in rats using a combination of thin skull window and skull-clearing reagents 使用薄颅骨窗和颅骨清除试剂组合增强大鼠黄蛋白自身荧光成像
IF 2.5 4区 医学
Neuroscience Letters Pub Date : 2025-04-17 DOI: 10.1016/j.neulet.2025.138239
Yuto Ogawa , Kazuaki Nagasaka , Daisuke Ishii , Ayane Nagao , Hitomi Ikarashi , Naofumi Otsuru , Hideaki Onishi
{"title":"Enhanced flavoprotein autofluorescence imaging in rats using a combination of thin skull window and skull-clearing reagents","authors":"Yuto Ogawa ,&nbsp;Kazuaki Nagasaka ,&nbsp;Daisuke Ishii ,&nbsp;Ayane Nagao ,&nbsp;Hitomi Ikarashi ,&nbsp;Naofumi Otsuru ,&nbsp;Hideaki Onishi","doi":"10.1016/j.neulet.2025.138239","DOIUrl":"10.1016/j.neulet.2025.138239","url":null,"abstract":"<div><div>Flavoprotein autofluorescence (FA) imaging is a powerful technique for investigating neural activity in vivo. However, its application in rats is limited by the thickness of the intact skull, which reduces light transmission and signal-to-noise ratio (SNR). In this study, we introduce a novel approach that integrates a thin skull window (TSW) with a skull-clearing reagent (CTSW) to enhance FA imaging in rats. The FA signals evoked by somatosensory stimulation were recorded under both TSW and CTSW conditions. The results demonstrate that CTSW significantly improved the SNR of FA signals compared to TSW alone, enabling more precise detection of neural activity. Notably, the enhanced signal clarity facilitated robust imaging in the secondary motor cortex (M2), a region where activity is barely detectable using conventional TSW. By better preserving intracranial physiological conditions than craniotomy, CTSW minimizes postoperative complications and supports longitudinal imaging. Furthermore, this technique may be applicable to other optical imaging modalities, including calcium and vascular imaging. The ability to enhance cortical signal detection while maintaining a minimally invasive preparation positions CTSW as a promising tool for functional mapping and long-term studies in behaving rats.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"856 ","pages":"Article 138239"},"PeriodicalIF":2.5,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143847760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信