{"title":"脑卒中后可通过调节钙调磷酸酶和心磷脂动态来缓解线粒体功能障碍和衰老。","authors":"Pallab Bhattacharya , Shailendra Saraf , Anirban Barik , Bijoyani Ghosh , Aishika Datta , Davendra Singh Malik","doi":"10.1016/j.neulet.2025.138410","DOIUrl":null,"url":null,"abstract":"<div><div>The crucial influence of mitochondria in ischemic stroke pathophysiology presents many unexplored yet promising avenues for therapeutic strategies and clinical outcomes. Post-stroke mitochondrial dysfunction contributes to aggravated levels of calcium overload and apoptosis. This dysfunction is signified by disruption of the mitochondrial lipids such as cardiolipin, along with mitochondrial DNA mutation, leading to an imbalance in mitophagy. Calcium overload-mediated calcineurin overexpression has been reported to exacerbate mitochondrial damage and further contribute to neuronal apoptosis. In our study, we explored the alterations in the mitochondrial function following inhibition of the calcium-mediated calcineurin levels in post-stroke condition. In a rodent model of middle cerebral artery occlusion (MCAo), we observed that the inhibition of the calcium channels in post-stroke condition led to restored neuronal histology and viability following upregulation of the antioxidant levels. At the mitochondrial level, calcium channel inhibition downregulated calcineurin activation and normalized cardiolipin concentration, mitochondrial membrane potential, and respiratory control ratio in post-stroke condition. This inhibition also balanced the mitochondrial dynamics proteins and mitophagy towards neuronal recovery following ischemic stress. Moreover, it also normalized the expression of TERT, a key marker of mitochondrial health and aging. These findings highlight the role of calcium-mediated calcineurin in influencing mitochondrial dysfunction and aging in ischemic stroke. Thus, calcium channel inhibition offers a promising therapeutic strategy by preserving mitochondrial integrity and promoting neuroprotection following stroke.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"868 ","pages":"Article 138410"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial dysfunction and aging can be alleviated by modulating calcineurin and cardiolipin dynamics following stroke\",\"authors\":\"Pallab Bhattacharya , Shailendra Saraf , Anirban Barik , Bijoyani Ghosh , Aishika Datta , Davendra Singh Malik\",\"doi\":\"10.1016/j.neulet.2025.138410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The crucial influence of mitochondria in ischemic stroke pathophysiology presents many unexplored yet promising avenues for therapeutic strategies and clinical outcomes. Post-stroke mitochondrial dysfunction contributes to aggravated levels of calcium overload and apoptosis. This dysfunction is signified by disruption of the mitochondrial lipids such as cardiolipin, along with mitochondrial DNA mutation, leading to an imbalance in mitophagy. Calcium overload-mediated calcineurin overexpression has been reported to exacerbate mitochondrial damage and further contribute to neuronal apoptosis. In our study, we explored the alterations in the mitochondrial function following inhibition of the calcium-mediated calcineurin levels in post-stroke condition. In a rodent model of middle cerebral artery occlusion (MCAo), we observed that the inhibition of the calcium channels in post-stroke condition led to restored neuronal histology and viability following upregulation of the antioxidant levels. At the mitochondrial level, calcium channel inhibition downregulated calcineurin activation and normalized cardiolipin concentration, mitochondrial membrane potential, and respiratory control ratio in post-stroke condition. This inhibition also balanced the mitochondrial dynamics proteins and mitophagy towards neuronal recovery following ischemic stress. Moreover, it also normalized the expression of TERT, a key marker of mitochondrial health and aging. These findings highlight the role of calcium-mediated calcineurin in influencing mitochondrial dysfunction and aging in ischemic stroke. Thus, calcium channel inhibition offers a promising therapeutic strategy by preserving mitochondrial integrity and promoting neuroprotection following stroke.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"868 \",\"pages\":\"Article 138410\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030439402500299X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439402500299X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mitochondrial dysfunction and aging can be alleviated by modulating calcineurin and cardiolipin dynamics following stroke
The crucial influence of mitochondria in ischemic stroke pathophysiology presents many unexplored yet promising avenues for therapeutic strategies and clinical outcomes. Post-stroke mitochondrial dysfunction contributes to aggravated levels of calcium overload and apoptosis. This dysfunction is signified by disruption of the mitochondrial lipids such as cardiolipin, along with mitochondrial DNA mutation, leading to an imbalance in mitophagy. Calcium overload-mediated calcineurin overexpression has been reported to exacerbate mitochondrial damage and further contribute to neuronal apoptosis. In our study, we explored the alterations in the mitochondrial function following inhibition of the calcium-mediated calcineurin levels in post-stroke condition. In a rodent model of middle cerebral artery occlusion (MCAo), we observed that the inhibition of the calcium channels in post-stroke condition led to restored neuronal histology and viability following upregulation of the antioxidant levels. At the mitochondrial level, calcium channel inhibition downregulated calcineurin activation and normalized cardiolipin concentration, mitochondrial membrane potential, and respiratory control ratio in post-stroke condition. This inhibition also balanced the mitochondrial dynamics proteins and mitophagy towards neuronal recovery following ischemic stress. Moreover, it also normalized the expression of TERT, a key marker of mitochondrial health and aging. These findings highlight the role of calcium-mediated calcineurin in influencing mitochondrial dysfunction and aging in ischemic stroke. Thus, calcium channel inhibition offers a promising therapeutic strategy by preserving mitochondrial integrity and promoting neuroprotection following stroke.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.