Frida Stam, Sara Bjurling, Erik Nylander, Esther Olaniran Håkansson, Johan Gising, Mats Larhed, Luke R Odell, Alfhild Grönbladh, Mathias Hallberg
{"title":"胰岛素调节的氨基肽酶抑制剂C9在美沙酮损伤的原代细胞培养中恢复细胞活性。","authors":"Frida Stam, Sara Bjurling, Erik Nylander, Esther Olaniran Håkansson, Johan Gising, Mats Larhed, Luke R Odell, Alfhild Grönbladh, Mathias Hallberg","doi":"10.1016/j.neulet.2025.138415","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-regulated aminopeptidase (IRAP) is emerging as a pharmaceutical target for treatment of neurotoxic- and neurodegenerative symptoms commonly seen in cognitive impairments. Ligands of IRAP, such as Angiotensin IV and similar analogues, bind to the active site of IRAP and causes an inhibition of its enzymatic activity, which is suggested to improve cognitive functions. Opioids are widely used in the clinic to treat for example pain and opioid use disorder, however opioid use have been associated with cognitive impairments, impaired neuronal development, and neuronal damage. To evaluate the potential of the macrocyclic IRAP inhibitor compound 9 (C9), the present study examined the restorative effects of C9 after opioid-induced cell toxicity. The toxic impact of the commonly used opioids methadone and buprenorphine was determined in rat primary hippocampal and cortical cells, along with the effects on various viability markers after subsequent treatment with C9. The metabolism of tetrazolium bromide salt (MTT) was measured to assess mitochondrial activity, and the level of membrane damage was assessed by measuring lactate dehydrogenase (LDH) in the cell media. Fluorescent calcein dye was used to evaluate intracellular esterase activity. In conclusion, this study demonstrate that methadone and buprenorphine induce toxic effects in primary hippocampal and cortical cell cultures and that IRAP inhibitor C9 has a restorative effect on intracellular esterase activity in methadone-damaged cells.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138415"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulin-regulated aminopeptidase inhibitor C9 restores cellular activity in methadone-damaged primary cell cultures.\",\"authors\":\"Frida Stam, Sara Bjurling, Erik Nylander, Esther Olaniran Håkansson, Johan Gising, Mats Larhed, Luke R Odell, Alfhild Grönbladh, Mathias Hallberg\",\"doi\":\"10.1016/j.neulet.2025.138415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin-regulated aminopeptidase (IRAP) is emerging as a pharmaceutical target for treatment of neurotoxic- and neurodegenerative symptoms commonly seen in cognitive impairments. Ligands of IRAP, such as Angiotensin IV and similar analogues, bind to the active site of IRAP and causes an inhibition of its enzymatic activity, which is suggested to improve cognitive functions. Opioids are widely used in the clinic to treat for example pain and opioid use disorder, however opioid use have been associated with cognitive impairments, impaired neuronal development, and neuronal damage. To evaluate the potential of the macrocyclic IRAP inhibitor compound 9 (C9), the present study examined the restorative effects of C9 after opioid-induced cell toxicity. The toxic impact of the commonly used opioids methadone and buprenorphine was determined in rat primary hippocampal and cortical cells, along with the effects on various viability markers after subsequent treatment with C9. The metabolism of tetrazolium bromide salt (MTT) was measured to assess mitochondrial activity, and the level of membrane damage was assessed by measuring lactate dehydrogenase (LDH) in the cell media. Fluorescent calcein dye was used to evaluate intracellular esterase activity. In conclusion, this study demonstrate that methadone and buprenorphine induce toxic effects in primary hippocampal and cortical cell cultures and that IRAP inhibitor C9 has a restorative effect on intracellular esterase activity in methadone-damaged cells.</p>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\" \",\"pages\":\"138415\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neulet.2025.138415\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2025.138415","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Insulin-regulated aminopeptidase (IRAP) is emerging as a pharmaceutical target for treatment of neurotoxic- and neurodegenerative symptoms commonly seen in cognitive impairments. Ligands of IRAP, such as Angiotensin IV and similar analogues, bind to the active site of IRAP and causes an inhibition of its enzymatic activity, which is suggested to improve cognitive functions. Opioids are widely used in the clinic to treat for example pain and opioid use disorder, however opioid use have been associated with cognitive impairments, impaired neuronal development, and neuronal damage. To evaluate the potential of the macrocyclic IRAP inhibitor compound 9 (C9), the present study examined the restorative effects of C9 after opioid-induced cell toxicity. The toxic impact of the commonly used opioids methadone and buprenorphine was determined in rat primary hippocampal and cortical cells, along with the effects on various viability markers after subsequent treatment with C9. The metabolism of tetrazolium bromide salt (MTT) was measured to assess mitochondrial activity, and the level of membrane damage was assessed by measuring lactate dehydrogenase (LDH) in the cell media. Fluorescent calcein dye was used to evaluate intracellular esterase activity. In conclusion, this study demonstrate that methadone and buprenorphine induce toxic effects in primary hippocampal and cortical cell cultures and that IRAP inhibitor C9 has a restorative effect on intracellular esterase activity in methadone-damaged cells.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.