Ruiyan Wang , Guanglin Liu , Huan Chen , Hongwei Hou , Qingyuan Hu
{"title":"将催产素与尼古丁依赖联系起来:一项关于老鼠大脑、行为和肠道微生物群的实验研究。","authors":"Ruiyan Wang , Guanglin Liu , Huan Chen , Hongwei Hou , Qingyuan Hu","doi":"10.1016/j.neulet.2025.138198","DOIUrl":null,"url":null,"abstract":"<div><div>Oxytocin (OXT) is a hypothalamic neuropeptide, and numerous studies have indicated that exposure to addictive substances, such as opioids, cocaine, etc., can result in decreased function of the OXT system. The study also found that OXT can reduce addictive behavior for certain drugs, including methamphetamine, alcohol, and cocaine, suggesting a close relationship between the OXT system and drug abuse. Although nicotine is the main addictive substance in tobacco, its interaction with the OXT system is unknown and requires further study. Therefore, OXT levels in plasma and brain regions associated with addiction were measured by enzyme-linked immunosorbent assay (ELISA) using chronic nicotine administration via a slow-release pump. In addition, the effects of OXT injection on nicotine self-administration behavior, motor activity, and intestinal microbiota in rats were examined by nicotine self-administration experiment, open field experiment, and 16S sequencing experiment. By depleting gut microbiota with oral antibiotics, this study aims to investigate whether gut microbiota mediates oxytocin effect on the nicotine self-administration behavior in rats. This study shows that chronic nicotine administration can reduce OXT levels in plasma and brain regions such as the paraventricular nucleus (PVN), ventral tegmental area (VTA), and caudate putamen (CPU). OXT at a dose of 1.0 mg/kg significantly reduced the number of nicotine infusions and the abundance of Lactobacillus in rats. Notably, our findings indicate that other mechanisms besides gut microbes are involved in the effect of peripheral OXT administration on the inhibition of nicotine self-administration.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"852 ","pages":"Article 138198"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking oxytocin to nicotine dependence: An experimental study of the brain, behavior, and gut microbiota in rats\",\"authors\":\"Ruiyan Wang , Guanglin Liu , Huan Chen , Hongwei Hou , Qingyuan Hu\",\"doi\":\"10.1016/j.neulet.2025.138198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxytocin (OXT) is a hypothalamic neuropeptide, and numerous studies have indicated that exposure to addictive substances, such as opioids, cocaine, etc., can result in decreased function of the OXT system. The study also found that OXT can reduce addictive behavior for certain drugs, including methamphetamine, alcohol, and cocaine, suggesting a close relationship between the OXT system and drug abuse. Although nicotine is the main addictive substance in tobacco, its interaction with the OXT system is unknown and requires further study. Therefore, OXT levels in plasma and brain regions associated with addiction were measured by enzyme-linked immunosorbent assay (ELISA) using chronic nicotine administration via a slow-release pump. In addition, the effects of OXT injection on nicotine self-administration behavior, motor activity, and intestinal microbiota in rats were examined by nicotine self-administration experiment, open field experiment, and 16S sequencing experiment. By depleting gut microbiota with oral antibiotics, this study aims to investigate whether gut microbiota mediates oxytocin effect on the nicotine self-administration behavior in rats. This study shows that chronic nicotine administration can reduce OXT levels in plasma and brain regions such as the paraventricular nucleus (PVN), ventral tegmental area (VTA), and caudate putamen (CPU). OXT at a dose of 1.0 mg/kg significantly reduced the number of nicotine infusions and the abundance of Lactobacillus in rats. Notably, our findings indicate that other mechanisms besides gut microbes are involved in the effect of peripheral OXT administration on the inhibition of nicotine self-administration.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"852 \",\"pages\":\"Article 138198\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025000862\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000862","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Linking oxytocin to nicotine dependence: An experimental study of the brain, behavior, and gut microbiota in rats
Oxytocin (OXT) is a hypothalamic neuropeptide, and numerous studies have indicated that exposure to addictive substances, such as opioids, cocaine, etc., can result in decreased function of the OXT system. The study also found that OXT can reduce addictive behavior for certain drugs, including methamphetamine, alcohol, and cocaine, suggesting a close relationship between the OXT system and drug abuse. Although nicotine is the main addictive substance in tobacco, its interaction with the OXT system is unknown and requires further study. Therefore, OXT levels in plasma and brain regions associated with addiction were measured by enzyme-linked immunosorbent assay (ELISA) using chronic nicotine administration via a slow-release pump. In addition, the effects of OXT injection on nicotine self-administration behavior, motor activity, and intestinal microbiota in rats were examined by nicotine self-administration experiment, open field experiment, and 16S sequencing experiment. By depleting gut microbiota with oral antibiotics, this study aims to investigate whether gut microbiota mediates oxytocin effect on the nicotine self-administration behavior in rats. This study shows that chronic nicotine administration can reduce OXT levels in plasma and brain regions such as the paraventricular nucleus (PVN), ventral tegmental area (VTA), and caudate putamen (CPU). OXT at a dose of 1.0 mg/kg significantly reduced the number of nicotine infusions and the abundance of Lactobacillus in rats. Notably, our findings indicate that other mechanisms besides gut microbes are involved in the effect of peripheral OXT administration on the inhibition of nicotine self-administration.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.