Non-Coding RNAPub Date : 2024-04-12DOI: 10.3390/ncrna10020023
Aysegul Yucel-Polat, D. Campos-Melo, Asieh Alikhah, Michael J. Strong
{"title":"Dynamic Localization of Paraspeckle Components under Osmotic Stress.","authors":"Aysegul Yucel-Polat, D. Campos-Melo, Asieh Alikhah, Michael J. Strong","doi":"10.3390/ncrna10020023","DOIUrl":"https://doi.org/10.3390/ncrna10020023","url":null,"abstract":"Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the cell. Despite evidence showing the importance of paraspeckles in the stress response, the dynamics of paraspeckles and their components under conditions of osmotic stress remain unknown. We exposed HEK293T cells to sorbitol and examined NEAT1_2 expression using real-time PCR. Localization and quantification of the main paraspeckle components, NEAT1_2, PSPC1, NONO, and SFPQ, in different cellular compartments was performed using smFISH and immunofluorescence. Our findings showed a significant decrease in total NEAT1_2 expression in cells after osmotic stress. Sorbitol shifted the subcellular localization of NEAT1_2, PSPC1, NONO, and SFPQ from the nucleus to the cytoplasm and decreased the number and size of NEAT1_2 foci in the nucleus. PSPC1 formed immunoreactive cytoplasmic fibrils under conditions of osmotic stress, which slowly disassembled under recovery. Our study deepens the paraspeckle dynamics in response to stress, suggesting a novel role for NEAT1_2 in the cytoplasm in osmotic stress and physiological conditions.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-04-10DOI: 10.3390/ncrna10020022
Mohd Saquib, P. Agnihotri, Ashish Sarkar, Swati Malik, Sonia Mann, Debolina Chakraborty, Lovely Joshi, Rajesh Malhotra, S. Biswas
{"title":"Functional Significance of miR-4693-5p in Targeting HIF1α and Its Link to Rheumatoid Arthritis Pathogenesis.","authors":"Mohd Saquib, P. Agnihotri, Ashish Sarkar, Swati Malik, Sonia Mann, Debolina Chakraborty, Lovely Joshi, Rajesh Malhotra, S. Biswas","doi":"10.3390/ncrna10020022","DOIUrl":"https://doi.org/10.3390/ncrna10020022","url":null,"abstract":"Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes joint inflammation and destruction with an unknown origin. Our study aims to elucidate the molecular mechanism behind HIF1α overexpression in RA. Dysregulated miRNA expressions are known to influence gene behavior, thereby enhancing cell proliferation, inflammation, and resistance to apoptosis, contributing to RA development. Our earlier finding indicated that exogenous miRNA similar to miR-4693-5p may modulate RA-related targets. However, the specific role of miR-4693-5p and its targets in RA remain unexplored. In this study, we found that miR-4693-5p was significantly reduced in PBMCs of RA patients, with evidence suggesting it targets the 3' UTR of HIF1α, thereby potentially contributing to its overexpression in RA. In vitro overexpression of miR-4693-5p leads to the knockdown of HIF1α, resulting in inhibited expression of Survivin to disrupt apoptosis resistance, inflammation suppression, and a reduction in the total cellular ROS response in SW982 and RAFLS cells. The results were validated using the CIA Rat model. In conclusion, this study provides a crucial foundation for understanding the functional role of miR-4693-5p. These findings improve our understanding and provide novel insights into the molecular mechanisms underlying RA pathogenesis.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140719647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-04-10DOI: 10.3390/ncrna10020021
Emily S. Westemeier-Rice, Michael T. Winters, Travis W. Rawson, Ivan Martinez
{"title":"More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease.","authors":"Emily S. Westemeier-Rice, Michael T. Winters, Travis W. Rawson, Ivan Martinez","doi":"10.3390/ncrna10020021","DOIUrl":"https://doi.org/10.3390/ncrna10020021","url":null,"abstract":"Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140718554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-04-09DOI: 10.3390/ncrna10020020
Swati Mohapatra, Anik Banerjee, Paola C. Rausseo, M. Dragomir, G. Manyam, B. Broom, G. Calin
{"title":"FuncPEP v2.0: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs.","authors":"Swati Mohapatra, Anik Banerjee, Paola C. Rausseo, M. Dragomir, G. Manyam, B. Broom, G. Calin","doi":"10.3390/ncrna10020020","DOIUrl":"https://doi.org/10.3390/ncrna10020020","url":null,"abstract":"Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140727238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-03-29DOI: 10.3390/ncrna10020019
A. S. Shatskikh, E. Fefelova, M. Klenov
{"title":"Functions of RNAi Pathways in Ribosomal RNA Regulation","authors":"A. S. Shatskikh, E. Fefelova, M. Klenov","doi":"10.3390/ncrna10020019","DOIUrl":"https://doi.org/10.3390/ncrna10020019","url":null,"abstract":"Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-03-17DOI: 10.3390/ncrna10020018
Lorenza Guarnieri, Nicola Amodio, Francesca Bosco, Sara Carpi, Martina Tallarico, Luca Gallelli, Vincenzo Rania, Rita Citraro, Antonio Leo, Giovambattista De Sarro
{"title":"Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy.","authors":"Lorenza Guarnieri, Nicola Amodio, Francesca Bosco, Sara Carpi, Martina Tallarico, Luca Gallelli, Vincenzo Rania, Rita Citraro, Antonio Leo, Giovambattista De Sarro","doi":"10.3390/ncrna10020018","DOIUrl":"10.3390/ncrna10020018","url":null,"abstract":"<p><p>Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-03-14DOI: 10.3390/ncrna10020017
Kisanet Tadesse, Raphael I Benhamou
{"title":"Targeting MicroRNAs with Small Molecules.","authors":"Kisanet Tadesse, Raphael I Benhamou","doi":"10.3390/ncrna10020017","DOIUrl":"10.3390/ncrna10020017","url":null,"abstract":"<p><p>MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine.","authors":"Roberto Piergentili, Enrico Marinelli, Gaspare Cucinella, Alessandra Lopez, Gabriele Napoletano, Giuseppe Gullo, Simona Zaami","doi":"10.3390/ncrna10020016","DOIUrl":"10.3390/ncrna10020016","url":null,"abstract":"<p><p>Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-02-15DOI: 10.3390/ncrna10010015
Tatiana Petrova, Olga Kalinina, Arthur Aquino, E. Grigoryev, N. Dubashynskaya, Kseniya Zubkova, Anna Kostareva, A. Golovkin
{"title":"Topographic Distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the Plasma Extracellular Vesicles","authors":"Tatiana Petrova, Olga Kalinina, Arthur Aquino, E. Grigoryev, N. Dubashynskaya, Kseniya Zubkova, Anna Kostareva, A. Golovkin","doi":"10.3390/ncrna10010015","DOIUrl":"https://doi.org/10.3390/ncrna10010015","url":null,"abstract":"There are many articles on the quantitative analysis of miRNAs contained in a population of EVs of different sizes under various physiological and pathological conditions. For such analysis, it is important to correctly quantify the miRNA contents of EVs. It should be considered that quantification is skewed depending on the isolation protocol, and different miRNAs are degraded by nucleases with different efficiencies. In addition, it is important to consider the contribution of miRNAs coprecipitating with the EVs population, because the amount of miRNAs in the EVs population under study is skewed without appropriate enzymatic treatment. By studying a population of EVs from the blood plasma of healthy donors, we found that the absolute amount of miRNA inside the vesicles is commensurate with the amount of the same type of miRNA adhered to the outside of the EVs. The inside/outside ratio ranged from 1.02 to 2.64 for different investigated miRNAs. According to our results, we propose the hypothesis that high occupancy of miRNAs on the outer surface of EVs influence on the transporting RNA repertoire no less than the inner cargo received from the host cell.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139834813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2024-02-15DOI: 10.3390/ncrna10010015
Tatiana Petrova, Olga Kalinina, Arthur Aquino, E. Grigoryev, N. Dubashynskaya, Kseniya Zubkova, Anna Kostareva, A. Golovkin
{"title":"Topographic Distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the Plasma Extracellular Vesicles","authors":"Tatiana Petrova, Olga Kalinina, Arthur Aquino, E. Grigoryev, N. Dubashynskaya, Kseniya Zubkova, Anna Kostareva, A. Golovkin","doi":"10.3390/ncrna10010015","DOIUrl":"https://doi.org/10.3390/ncrna10010015","url":null,"abstract":"There are many articles on the quantitative analysis of miRNAs contained in a population of EVs of different sizes under various physiological and pathological conditions. For such analysis, it is important to correctly quantify the miRNA contents of EVs. It should be considered that quantification is skewed depending on the isolation protocol, and different miRNAs are degraded by nucleases with different efficiencies. In addition, it is important to consider the contribution of miRNAs coprecipitating with the EVs population, because the amount of miRNAs in the EVs population under study is skewed without appropriate enzymatic treatment. By studying a population of EVs from the blood plasma of healthy donors, we found that the absolute amount of miRNA inside the vesicles is commensurate with the amount of the same type of miRNA adhered to the outside of the EVs. The inside/outside ratio ranged from 1.02 to 2.64 for different investigated miRNAs. According to our results, we propose the hypothesis that high occupancy of miRNAs on the outer surface of EVs influence on the transporting RNA repertoire no less than the inner cargo received from the host cell.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139775391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}