Non-Coding RNAPub Date : 2025-02-08DOI: 10.3390/ncrna11010014
Bulat I Yalaev, Elena I Kaletnik, Yulia S Karpova, Zhanna E Belaya, Ildar R Minniakhmetov, Natalia G Mokrysheva, Rita I Khusainova
{"title":"The Role of microRNA in the Regulation of Differentiation and the Functionality of Osteoblasts, Osteoclasts, and Their Precursors in Osteoporosis.","authors":"Bulat I Yalaev, Elena I Kaletnik, Yulia S Karpova, Zhanna E Belaya, Ildar R Minniakhmetov, Natalia G Mokrysheva, Rita I Khusainova","doi":"10.3390/ncrna11010014","DOIUrl":"10.3390/ncrna11010014","url":null,"abstract":"<p><p>Osteoporosis is a complex disease that is affected by a variety of factors, including genetic and epigenetic influences. While DNA markers for osteoporosis have been identified, they do not fully explain the hereditary basis of the disease. Epigenetic factors, such as small microRNAs (miRNAs), may provide a missing link in understanding the molecular mechanisms underlying osteoporosis. miRNAs are a class of non-coding RNAs that play a role in the epigenetic regulation of gene expression. They are known to be involved in various biological processes, including bone formation and remodelling. Differential expression of miRNAs has been linked to the pathological decrease in bone mineral density associated with osteoporosis. It has been shown that an abnormal miRNA expression pattern leads to a decrease in osteoblast activity and an increase in osteoclast activity. Further research into the role of miRNAs in osteoporosis may help to better understand this disease and identify potential therapeutic targets for treatment. Based on these assumptions, the study of miRNA expression patterns in osteoblasts, osteoclasts, and their precursors under normal and osteoporotic conditions is a rapidly growing field of scientific research. Although the results of this research are still incomplete and sometimes contradictory, they require additional scientific analysis to better understand the complex mechanisms involved. The purpose of this paper is to review the current research on miRNAs specifically expressed in osteoblasts and osteoclasts under both normal and pathological conditions. We will also discuss the potential applications of these miRNAs as biomarkers for osteoporosis diagnosis and as targets for osteoporosis treatment.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-02-07DOI: 10.3390/ncrna11010013
Julia Rymuza, Angelika Długosz, Kamil Zalewski, Artur Kowalik, Mateusz Bujko, Magdalena Kowalewska
{"title":"Circulating MicroRNAs in Patients with Vulvar Squamous Cell Carcinoma and Its Precursors.","authors":"Julia Rymuza, Angelika Długosz, Kamil Zalewski, Artur Kowalik, Mateusz Bujko, Magdalena Kowalewska","doi":"10.3390/ncrna11010013","DOIUrl":"10.3390/ncrna11010013","url":null,"abstract":"<p><p><b>Objectives</b>: Vulvar squamous cell carcinoma (VSCC) is a rare gynecologic malignancy, with most cases arising from differentiated vulvar intraepithelial neoplasia (dVIN). Approximately one-third of VSCC cases originate from high-grade squamous intraepithelial lesions (HSILs), which are associated with persistent infection by varieties of high-risk human papillomavirus (hrHPV). This study aimed to quantify the circulating microRNAs (miRNAs) in the plasma of patients with premalignant conditions (dVIN and HSILs) and VSCC using TaqMan Low-Density Arrays. <b>Methods</b>: Plasma samples were collected from 40 patients, including those treated for HSILs, dVIN, and VSCC. Quantitative real-time PCR (qRT-PCR) identified the circulating miRNAs differentially expressed in the plasma of VSCC patients compared to patients with precancerous lesions. <b>Results</b>: A total of 31 differentially expressed miRNAs (DEMs) were found to be significantly upregulated in plasma from VSCC patients compared to precancerous cases. None of the analyzed miRNAs were able to distinguish VSCC cases based on hrHPV tumor status. <b>Conclusions</b>: This study provides strong evidence that a distinct set of miRNAs can differentiate between plasma samples from VSCC patients and those with precancerous lesions. Thus, these DEMs have potential diagnostic and prognostic value. \"Predisposing\" DEMs could be developed as biomarkers to aid in the assessment of vulvar lesions, helping to exclude or confirm progression toward cancer.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cleft Palate Induced by Mycophenolate Mofetil Is Associated with <i>miR-4680-3p</i> and <i>let-7c-5p</i> in Human Palate Cells.","authors":"Hiroki Yoshioka, Hanane Horita, Yosuke Tsukiboshi, Hisaka Kurita, Aya Ogata, Kenichi Ogata","doi":"10.3390/ncrna11010012","DOIUrl":"10.3390/ncrna11010012","url":null,"abstract":"<p><p><b>Background/Objectives</b>: Cleft palate is a birth defect associated with environmental and genetic factors. Disturbance of microRNAs (miRNAs) and exposure to medicinal agents during pregnancy can cause cleft palate. Although an association between medicine-induced cleft palate and miRNAs has been suggested, it remains to be fully elucidated. This study aimed to clarify the molecular mechanism underlying mycophenolate mofetil (MPM)-induced inhibition of cell proliferation and miRNA expression in human embryonic palatal mesenchymal (HEPM) cells. <b>Methods</b>: Cell viability, apoptosis, and cell cycle-related markers were evaluated 48 h after MPM treatment. In addition, miRNA levels and expression of their downstream genes were measured, and a rescue experiment was performed using <i>miR-4680-3p</i> and/or <i>let-7c-5p</i> inhibitors. <b>Results</b>: MPM dose-dependently reduced HEPM cell viability. Additionally, MPM treatment suppressed cyclin-D1, cyclin E1, cyclin-dependent kinase (CDK)-2, and CDK6 expression in HEPM cells. Furthermore, MPM upregulated <i>miR-4680-3p</i> and <i>let-7c-5p</i> expression and downregulated the downstream genes of each miRNA. Moreover, <i>miR-4680-3p</i> and/or <i>let-7c-5p</i> inhibitors alleviated MPM-induced inhibition of cell proliferation. <b>Conclusions</b>: These results suggest that MPM-induced cleft palate is associated with <i>miR-4680-3p</i> and <i>let-7c-5p</i> expression in HEPM cells.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-02-05DOI: 10.3390/ncrna11010011
Oenone Rodgers, Chris Watson, Thomas Waterfield
{"title":"miRNA Library Preparation Optimisation for Low-Concentration and Low-Volume Paediatric Plasma Samples.","authors":"Oenone Rodgers, Chris Watson, Thomas Waterfield","doi":"10.3390/ncrna11010011","DOIUrl":"10.3390/ncrna11010011","url":null,"abstract":"<p><p><b>Background:</b> Analysing circulating miRNAs in paediatric plasma is challenging due to typically low sample volumes. The QIAseq miRNA UDI Library Kit (Qiagen, Hilden, Germany) was selected as it has a proven track record with a specific protocol for plasma and serum. The protocol, however, required optimisation for use with low-volume paediatric plasma samples before generating acceptable yields in our cohort. <b>Methods:</b> The miRNeasy Serum/Plasma kit (Qiagen) and the MagMAX miRVana Total Isolation kit (ThermoFisher Scientific, Waltham, MA, USA) were assessed following the manufacturer's instructions with 100 µL and 200 µL of paediatric plasma. Libraries were prepared using the QIAseq miRNA UDI Library Kit (Qiagen). Optimisations were made for the QIAseq miRNA UDI Library Kit (Qiagen) using total RNA extracted with the miRNeasy Serum/Plasma kit (Qiagen) from 100 µL of plasma. <b>Results:</b> Prior to optimisation, both RNA extraction kits underperformed with the QIAseq miRNA UDI Library kit, producing low miRNA library yields ranging between 0 and 1.42 ng/µL. Plasma input volumes of 100 µL and 200 µL demonstrated no significant differences. Adjusting the QIAseq protocol for low RNA concentrations improved miRNA library yields, an average of 5.6 ng/µL and a maximum of 24.3 ng/µL across 92 samples. The optimised protocol showed no age or gender biases with the QIAseq kit. <b>Conclusions:</b> Failure rates in miRNA library preparations are rarely reported, making it hard to gauge whether the 8.7% failure rate observed here is typical. However, given the challenges of using low-concentration, low-volume paediatric plasma, this represents a significant improvement over previous attempts, supporting further research in the field.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential Expression of miRNAs Between Young-Onset and Late-Onset Indian Colorectal Carcinoma Patients.","authors":"Sumaiya Moiz, Barsha Saha, Varsha Mondal, Debarati Bishnu, Biswajit Das, Bodhisattva Bose, Soumen Das, Nirmalya Banerjee, Amitava Dutta, Krishti Chatterjee, Srikanta Goswami, Soma Mukhopadhyay, Sudarshana Basu","doi":"10.3390/ncrna11010010","DOIUrl":"10.3390/ncrna11010010","url":null,"abstract":"<p><p>Reports indicate a worldwide increase in the incidence of Early-Onset Colorectal Carcinoma (EOCRC) (<50 years old). In an effort to understand the different modes of pathogenesis in early-onset CRC, colorectal tumors from EOCRC (<50 years old) and Late-Onset patients (LOCRC; >50 years old) were screened to eliminate microsatellite instability (MSI), nuclear β-catenin, and <i>APC</i> mutations, as these are known canonical factors in CRC pathogenesis. Small-RNA sequencing followed by comparative analysis revealed differential expression of 23 miRNAs (microRNAs) specific to EOCRC and 11 miRNAs specific to LOCRC. We validated the top 10 EOCRC DEMs in TCGA-COAD and TCGA-READ cohorts, followed by validation in additional EOCRC and LOCRC cohorts. Our integrated analysis revealed upregulation of hsa-miR-1247-3p and hsa-miR-148a-3p and downregulation of hsa-miR-326 between the two subsets. Experimentally validated targets of the above miRNAs were compared with differentially expressed genes in the TCGA dataset to identify targets with physiological significance in EOCRC development. Our analysis revealed metabolic reprogramming, downregulation of anoikis-regulating pathways, and changes in tissue morphogenesis, potentially leading to anchorage-independent growth and progression of epithelial-mesenchymal transition (EMT). Upregulated targets include proteins present in the basal part of intestinal epithelial cells and genes whose expression is known to correlate with invasion and poor prognosis.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-01-29DOI: 10.3390/ncrna11010009
Olalekan Olatunde Fadebi, Thabiso Victor Miya, Richard Khanyile, Zodwa Dlamini, Rahaba Marima
{"title":"Long Intergenic Non-Coding RNAs and <i>BRCA1</i> in Breast Cancer Pathogenesis: Neighboring Companions or Nemeses?","authors":"Olalekan Olatunde Fadebi, Thabiso Victor Miya, Richard Khanyile, Zodwa Dlamini, Rahaba Marima","doi":"10.3390/ncrna11010009","DOIUrl":"10.3390/ncrna11010009","url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of mortality among women, primarily due to its complex molecular landscape and heterogeneous nature. The tendency of breast cancer patients to develop metastases poses significant challenges in clinical management. Notably, mutations in the breast cancer gene 1 (<i>BRCA1</i>) significantly elevate breast cancer risk. The current research endeavors employ diverse molecular approaches, including RNA, DNA, and protein studies, to explore avenues for the early diagnosis and treatment of breast cancer. Recent attention has shifted towards long non-coding RNAs (lncRNAs) as promising diagnostic, prognostic, and therapeutic targets in the multifaceted progression of breast cancer. Among these, long intergenic non-coding RNAs (lincRNAs), a specific class of lncRNAs, play critical roles in regulating various aspects of tumorigenesis, including cell proliferation, apoptosis, epigenetic modulation, tumor invasion, and metastasis. Their distinctive expression patterns in cellular and tissue contexts underscore their importance in breast cancer development and progression. Harnessing lincRNAs' sensitivity and precision as diagnostic, therapeutic, and prognostic markers holds significant promise for the clinical management of breast cancer. However, the potential of lincRNAs remains relatively underexplored, particularly in the context of <i>BRCA1</i>-mutated breast cancer and other clinicopathological parameters such as receptor status and patient survival. Consequently, there is an urgent need for comprehensive investigations into novel diagnostic and prognostic breast cancer biomarkers. This review examines the roles of lincRNAs associated with <i>BRCA1</i> in the landscape of breast cancer, highlighting the potential avenues for future research and clinical applications.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-01-20DOI: 10.3390/ncrna11010008
Verena Schlösser, Helen Louise Lightfoot, Christine Leemann, Seyedeh Elnaz Banijamali, Aathma Merin Bejoy, Shashank Tiwari, Jeffrey L Schloßhauer, Valentina Vongrad, Andreas Brunschweiger, Jonathan Hall, Karin J Metzner, Jochen Imig
{"title":"Anti-HIV-1 Effect of the Fluoroquinolone Enoxacin and Modulation of Pro-Viral hsa-miR-132 Processing in CEM-SS Cells.","authors":"Verena Schlösser, Helen Louise Lightfoot, Christine Leemann, Seyedeh Elnaz Banijamali, Aathma Merin Bejoy, Shashank Tiwari, Jeffrey L Schloßhauer, Valentina Vongrad, Andreas Brunschweiger, Jonathan Hall, Karin J Metzner, Jochen Imig","doi":"10.3390/ncrna11010008","DOIUrl":"10.3390/ncrna11010008","url":null,"abstract":"<p><strong>Background: </strong>Despite tremendous advances in antiretroviral therapy (ART) against HIV-1 infections, no cure or vaccination is available. Therefore, discovering novel therapeutic strategies remains an urgent need. In that sense, miRNAs and miRNA therapeutics have moved intensively into the focus of recent HIV-1-related investigations. A strong reciprocal interdependence has been demonstrated between HIV-1 infection and changes of the intrinsic cellular miRNA milieu. This interrelationship may direct potential alterations of the host cells' environment beneficial for the virus or its suppression of replication. Whether this tightly balanced and controlled battle can be exploited therapeutically remains to be further addressed. In this context, the fluoroquinolone antibiotic Enoxacin has been demonstrated as a potent modulator of miRNA processing. Here, we test the hypothesis that this applies also to selected HIV-1-related miRNAs.</p><p><strong>Methods: </strong>We studied the effect of Enoxacin on HIV-1 replication coupled with miRNA qRT-PCR analysis of HIV-1-related miRNAs in CEM-SS and MT-4 T-cells. The effects of miRNA mimic transfections combined with Enoxacin treatment on HIV-1 replication were assessed. Finally, we employed an in vitro DICER1 cleavage assay to study the effects of Enoxacin on a pro-HIV-1 miRNA hsa-miR-132 processing.</p><p><strong>Results: </strong>We established that Enoxacin, but not the structurally similar compound nalidixic acid, exhibits strong anti-HIV-1 effects in the T-cell line CEM-SS, but not MT-4. We provide experimental data that this effect of Enoxacin is partly attributed to the specific downregulation of mature hsa-miR-132-3p, but not other tested pro- or anti-HIV-1 miRNAs, which is likely due to affecting DICER1 processing.</p><p><strong>Conclusions: </strong>Our findings show an anti-retroviral activity of Enoxacin at least in part by downregulation of hsa-miR-132-3p, which may be relevant for future antiviral therapeutic applications by modulation of the RNA interference pathway.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-01-17DOI: 10.3390/ncrna11010007
Kajetan Kiełbowski, Anna Jędrasiak, Estera Bakinowska, Andrzej Pawlik
{"title":"The Role of Long Non-Coding RNA in the Pathogenesis of Psoriasis.","authors":"Kajetan Kiełbowski, Anna Jędrasiak, Estera Bakinowska, Andrzej Pawlik","doi":"10.3390/ncrna11010007","DOIUrl":"10.3390/ncrna11010007","url":null,"abstract":"<p><p>Psoriasis is a chronic immune-mediated disease with complex pathogenesis. The altered proliferation and differentiation of keratinocytes, together with the activity of dendritic cells and T cells, are crucial drivers of psoriasis progression. Long non-coding RNAs (lncRNAs) are composed of over 200 nucleotides and exert a large variety of functions, including the regulation of gene expression. Under pathological conditions, the expression of lncRNAs is frequently dysregulated. Recent studies demonstrated that lncRNAs significantly affect major cellular processes, and their aberrant expression is likely involved in the pathogenesis of various disorders. In this review, we will discuss the role of lncRNAs in the pathophysiology of psoriasis. We will summarize recent studies that investigated the relationships between lncRNAs and keratinocyte proliferation and pro-inflammatory responses.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-01-15DOI: 10.3390/ncrna11010006
Manas Joshi, Mohd Mabood Khan
{"title":"In Silico Prediction of Maize microRNA as a Xanthine Oxidase Inhibitor: A New Approach to Treating Hyperuricemia Patients.","authors":"Manas Joshi, Mohd Mabood Khan","doi":"10.3390/ncrna11010006","DOIUrl":"10.3390/ncrna11010006","url":null,"abstract":"<p><strong>Introduction: </strong>Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity. The identification of stable Zea mays miRNA (zma-miR) in humans has opened up a new avenue for speculation about its part in regulating novel human gene targets.</p><p><strong>Aims: </strong>The aim of this study was to investigate the prospects of zma-miRs in XO gene regulation, the possible mechanism, and the interaction analysis of the zma-miR-XO mRNA transcript.</p><p><strong>Method: </strong>Significant features of miRNA-mRNA interaction were revealed using two popular miRNA target prediction software-intaRNA (version 3.3.1) and RNA hybrid (version 2.2.1) Results: Only 12 zma-miR-156 variants, out of the 325 zma-miR's sequences reported in the miRNA database, efficiently interact with the 3'UTR of the XO gene. Characteristics of miRNA-mRNA interaction were as follows: the positioning of zma-miR-156 variants shows that they all have the same 11-mer binding sites, guanine (G), and uracil (U) loops at the 13th and 14th positions from the 5' end, and no G: U wobble pairing. These factors are related to the inhibition of functional mRNA expression. Additionally, the zma-miR-156 variants exhibit a single-base variation (SBV), which leads to distinct yet highly effective alterations in their interaction pattern with the XO mRNA transcript and the corresponding free energy values.</p><p><strong>Conclusion: </strong>Therefore, we propose that zma-miR-156 variants may be a promising new bioactive compound against hyperuricemia and related diseases.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-Coding RNAPub Date : 2025-01-14DOI: 10.3390/ncrna11010005
Donatella Coradduzza, Sara Cruciani, Biagio Di Lorenzo, Maria Rosaria De Miglio, Angelo Zinellu, Margherita Maioli, Serenella Medici, Gian Luca Erre, Ciriaco Carru
{"title":"Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study.","authors":"Donatella Coradduzza, Sara Cruciani, Biagio Di Lorenzo, Maria Rosaria De Miglio, Angelo Zinellu, Margherita Maioli, Serenella Medici, Gian Luca Erre, Ciriaco Carru","doi":"10.3390/ncrna11010005","DOIUrl":"10.3390/ncrna11010005","url":null,"abstract":"<p><p><b>Background:</b> Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with an increased risk of cardiovascular disease (CVD), largely driven by peripheral endothelial dysfunction (ED). Humanin, a mitochondrial-derived peptide, has been suggested to play a protective role in endothelial function. However, the relationship between Humanin levels and ED in RA, as well as the interaction between Humanin and non-coding RNAs such as Long Non-Coding RNA GAS5, microRNA-21 (miR-21), and microRNA-103 (miR-103), remains unclear. <b>Objective:</b> This study aimed to investigate the relationship between circulating Humanin levels, non-coding RNAs (GAS5, miR-21, miR-103), and endothelial dysfunction (ED) in patients with RA. Additionally, we explored the correlation between Humanin expression and specific non-coding RNAs (GAS5, miR-21, and miR-103) to better understand their potential role in vascular health. <b>Methods:</b> Peripheral ED was assessed using flow-mediated pulse amplitude tonometry, with Ln-RHI values <0.51 indicating dysfunction. Humanin levels, GAS5, miR-21, and miR-103 were measured in RA patients. Univariate and multivariate analyses were conducted to determine the relationship between these biomarkers and ED. Kaplan-Meier survival analysis and ROC curve analysis were used to assess the prognostic value of Humanin. <b>Results:</b> Higher Humanin levels were significantly associated with better endothelial function (OR = 0.9774, <i>p</i> = 0.0196). Kaplan-Meier analysis demonstrated that higher Humanin levels correlated with improved survival (<i>p</i> < 0.0001). The non-coding RNAs (GAS5, miR-21, and miR-103) did not show significant associations with ED. <b>Conclusions:</b> Humanin is a potential protective biomarker for endothelial dysfunction and survival in RA patients. Further research is needed to explore the interaction between Humanin and non-coding RNAs in the context of vascular health.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}