The Role of Non-Coding RNAs in MYC-Mediated Metabolic Regulation: Feedback Loops and Interactions.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aliaa Amr Alamoudi
{"title":"The Role of Non-Coding RNAs in MYC-Mediated Metabolic Regulation: Feedback Loops and Interactions.","authors":"Aliaa Amr Alamoudi","doi":"10.3390/ncrna11020027","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming is a hallmark of cancer, crucial for supporting the rapid energy demands of tumor cells. MYC, often deregulated and overexpressed, is a key driver of this shift, promoting the Warburg effect by enhancing glycolysis. However, there remains a gap in understanding the mechanisms and factors influencing MYC's metabolic roles. Recently, non-coding RNAs (ncRNAs) have emerged as important modulators of MYC functions. This review focuses on ncRNAs that regulate MYC-driven metabolism, particularly the Warburg effect. The review categorizes these ncRNAs into three main groups based on their interaction with MYC and examines the mechanisms behind these interactions. Additionally, we explore how different types of ncRNAs may collaborate or influence each other's roles in MYC regulation and metabolic function, aiming to identify biomarkers and synthetic lethality targets to disrupt MYC-driven metabolic reprogramming in cancer. Finaly, the review highlights the clinical implications of these ncRNAs, providing an up-to-date summary of their potential roles in cancer prognosis and therapy. With the recent advances in MYC-targeted therapy reaching clinical trials, the exciting potential of combining these therapies with ncRNA-based strategies holds great promise for enhancing treatment efficacy.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic reprogramming is a hallmark of cancer, crucial for supporting the rapid energy demands of tumor cells. MYC, often deregulated and overexpressed, is a key driver of this shift, promoting the Warburg effect by enhancing glycolysis. However, there remains a gap in understanding the mechanisms and factors influencing MYC's metabolic roles. Recently, non-coding RNAs (ncRNAs) have emerged as important modulators of MYC functions. This review focuses on ncRNAs that regulate MYC-driven metabolism, particularly the Warburg effect. The review categorizes these ncRNAs into three main groups based on their interaction with MYC and examines the mechanisms behind these interactions. Additionally, we explore how different types of ncRNAs may collaborate or influence each other's roles in MYC regulation and metabolic function, aiming to identify biomarkers and synthetic lethality targets to disrupt MYC-driven metabolic reprogramming in cancer. Finaly, the review highlights the clinical implications of these ncRNAs, providing an up-to-date summary of their potential roles in cancer prognosis and therapy. With the recent advances in MYC-targeted therapy reaching clinical trials, the exciting potential of combining these therapies with ncRNA-based strategies holds great promise for enhancing treatment efficacy.

非编码rna在myc介导的代谢调节中的作用:反馈回路和相互作用。
代谢重编程是癌症的一个标志,对支持肿瘤细胞快速的能量需求至关重要。MYC经常被解除管制和过度表达,是这种转变的关键驱动因素,通过增强糖酵解促进Warburg效应。然而,对影响MYC代谢作用的机制和因素的理解仍然存在空白。近年来,非编码rna (ncRNAs)已成为MYC功能的重要调节剂。这篇综述的重点是调控myc驱动代谢的ncrna,特别是Warburg效应。这篇综述根据这些ncrna与MYC的相互作用将它们分为三大类,并研究了这些相互作用背后的机制。此外,我们探索了不同类型的ncrna如何在MYC调控和代谢功能中相互协作或影响彼此的作用,旨在确定生物标志物和合成致死靶点,以破坏癌症中MYC驱动的代谢重编程。最后,综述强调了这些ncrna的临床意义,提供了它们在癌症预后和治疗中的潜在作用的最新总结。随着myc靶向治疗的最新进展进入临床试验阶段,将这些疗法与基于ncrna的策略相结合的令人兴奋的潜力有望提高治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信