MicroRNAs: A Novel Approach for Monitoring Treatment Response in Major Depressive Disorder?

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cristina-Sorina Cătană, Monica Mihaela Marta, Daniel Ungureanu, Cătălina-Angela Crișan
{"title":"MicroRNAs: A Novel Approach for Monitoring Treatment Response in Major Depressive Disorder?","authors":"Cristina-Sorina Cătană, Monica Mihaela Marta, Daniel Ungureanu, Cătălina-Angela Crișan","doi":"10.3390/ncrna11020021","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders, with an increasing incidence each year and an important socioeconomic burden. Although new treatments are continuously being developed, there is no effective monitoring method to determine the suitability of treatment and ensure positive outcomes. Therefore, patients often struggle with ineffective antidepressants and their potential adverse effects, which halts any future progress in managing the disorder. Considering the potential of microRNAs (miRNAs) as biomarkers for various pathologies and the increasing evidence of the modulation of several genes involved in MDD, this minireview aimed to evaluate the literature data on the impact of miRNAs in MDD and their usefulness in monitoring treatment response. The correlations between antidepressants and the expression of several miRNAs support the existence of a common epigenetic mechanism of antidepressants and explain the epigenetic differences influencing treatment efficacy in MDD.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders, with an increasing incidence each year and an important socioeconomic burden. Although new treatments are continuously being developed, there is no effective monitoring method to determine the suitability of treatment and ensure positive outcomes. Therefore, patients often struggle with ineffective antidepressants and their potential adverse effects, which halts any future progress in managing the disorder. Considering the potential of microRNAs (miRNAs) as biomarkers for various pathologies and the increasing evidence of the modulation of several genes involved in MDD, this minireview aimed to evaluate the literature data on the impact of miRNAs in MDD and their usefulness in monitoring treatment response. The correlations between antidepressants and the expression of several miRNAs support the existence of a common epigenetic mechanism of antidepressants and explain the epigenetic differences influencing treatment efficacy in MDD.

重度抑郁障碍(MDD)是最常见的精神疾病之一,发病率逐年上升,对社会经济造成了沉重的负担。虽然新疗法不断涌现,但目前还没有有效的监测方法来确定治疗的适宜性并确保取得积极疗效。因此,患者常常在无效的抗抑郁药物及其潜在的不良反应中挣扎,这阻碍了今后在控制疾病方面取得任何进展。考虑到microRNAs(miRNAs)作为各种病理生物标志物的潜力,以及越来越多的证据表明miRNAs可调节与MDD有关的多个基因,本微综述旨在评估有关miRNAs对MDD的影响及其在监测治疗反应方面的作用的文献数据。抗抑郁药与几种miRNAs表达之间的相关性支持抗抑郁药存在共同的表观遗传学机制,并解释了影响MDD疗效的表观遗传学差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信