Non-Coding RNA最新文献

筛选
英文 中文
A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity. 由SARS-CoV-2基因组负链产生的microRNA靶向FOS降低AP-1活性
IF 4.3
Non-Coding RNA Pub Date : 2023-05-23 DOI: 10.3390/ncrna9030033
Francesco Greco, Elisa Lorefice, Claudia Carissimi, Ilaria Laudadio, Fabiola Ciccosanti, Martina Di Rienzo, Francesca Colavita, Silvia Meschi, Fabrizio Maggi, Gian Maria Fimia, Valerio Fulci
{"title":"A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity.","authors":"Francesco Greco,&nbsp;Elisa Lorefice,&nbsp;Claudia Carissimi,&nbsp;Ilaria Laudadio,&nbsp;Fabiola Ciccosanti,&nbsp;Martina Di Rienzo,&nbsp;Francesca Colavita,&nbsp;Silvia Meschi,&nbsp;Fabrizio Maggi,&nbsp;Gian Maria Fimia,&nbsp;Valerio Fulci","doi":"10.3390/ncrna9030033","DOIUrl":"https://doi.org/10.3390/ncrna9030033","url":null,"abstract":"<p><p>Virus-encoded microRNAs were first reported in the Epstein-Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the <i>herpesviridae</i> family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10078238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines. 抗癌药物对乳腺癌细胞系环状和线状rna的反向影响
IF 4.3
Non-Coding RNA Pub Date : 2023-05-19 DOI: 10.3390/ncrna9030032
Anna Terrazzan, Francesca Crudele, Fabio Corrà, Pietro Ancona, Jeffrey Palatini, Nicoletta Bianchi, Stefano Volinia
{"title":"Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines.","authors":"Anna Terrazzan,&nbsp;Francesca Crudele,&nbsp;Fabio Corrà,&nbsp;Pietro Ancona,&nbsp;Jeffrey Palatini,&nbsp;Nicoletta Bianchi,&nbsp;Stefano Volinia","doi":"10.3390/ncrna9030032","DOIUrl":"https://doi.org/10.3390/ncrna9030032","url":null,"abstract":"<p><p>Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, <i>VRK1</i> and <i>MAN1A2</i> were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Deletion of the LINC00520 Homolog in Mouse Aggravates Angiotensin II-Induced Hypertension. 小鼠 LINC00520 同源物的基因缺失会加重血管紧张素 II 诱导的高血压。
IF 3.6
Non-Coding RNA Pub Date : 2023-05-15 DOI: 10.3390/ncrna9030031
Xiaofang Tang, Chih-Hung Lai, Naseeb K Malhi, Rahuljeet Chadha, Yingjun Luo, Xuejing Liu, Dongqiang Yuan, Alonso Tapia, Maryam Abdollahi, Guangyu Zhang, Riccardo Calandrelli, Yan-Ting Shiu, Zhao V Wang, June-Wha Rhee, Sheng Zhong, Rama Natarajan, Zhen Bouman Chen
{"title":"Genetic Deletion of the <i>LINC00520</i> Homolog in Mouse Aggravates Angiotensin II-Induced Hypertension.","authors":"Xiaofang Tang, Chih-Hung Lai, Naseeb K Malhi, Rahuljeet Chadha, Yingjun Luo, Xuejing Liu, Dongqiang Yuan, Alonso Tapia, Maryam Abdollahi, Guangyu Zhang, Riccardo Calandrelli, Yan-Ting Shiu, Zhao V Wang, June-Wha Rhee, Sheng Zhong, Rama Natarajan, Zhen Bouman Chen","doi":"10.3390/ncrna9030031","DOIUrl":"10.3390/ncrna9030031","url":null,"abstract":"<p><p>(1) Background: Hypertension is a complex, multifactorial disease that is caused by genetic and environmental factors. Apart from genetic predisposition, the mechanisms involved in this disease have yet to be fully understood. We previously reported that LEENE (lncRNA enhancing endothelial nitric oxide expression, transcribed from <i>LINC00520</i> in the human genome) regulates endothelial cell (EC) function by promoting the expression of endothelial nitric oxide synthase (eNOS) and vascular growth factor receptor 2 (VEGFR2). Mice with genetic deletion of the <i>LEENE/LINC00520</i> homologous region exhibited impaired angiogenesis and tissue regeneration in a diabetic hindlimb ischemia model. However, the role of LEENE in blood pressure regulation is unknown. (2) Methods: We subjected mice with genetic ablation of <i>leene</i> and wild-type littermates to Angiotensin II (AngII) and monitored their blood pressure and examined their hearts and kidneys. We used RNA-sequencing to identify potential <i>leene</i>-regulated molecular pathways in ECs that contributed to the observed phenotype. We further performed in vitro experiments with murine and human ECs and ex vivo experiments with murine aortic rings to validate the select mechanism. (3) Results: We identified an exacerbated hypertensive phenotype of <i>leene</i>-KO mice in the AngII model, evidenced by higher systolic and diastolic blood pressure. At the organ level, we observed aggravated hypertrophy and fibrosis in the heart and kidney. Moreover, the overexpression of human LEENE RNA, in part, restored the signaling pathways impaired by <i>leene</i> deletion in murine ECs. Additionally, Axitinib, a tyrosine kinase inhibitor that selectively inhibits VEGFR suppresses LEENE in human ECs. (4) Conclusions: Our study suggests LEENE as a potential regulator in blood pressure control, possibly through its function in ECs.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 3","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10003333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T2DB: A Web Database for Long Non-Coding RNA Genes in Type II Diabetes. T2DB:II型糖尿病中长非编码RNA基因的网络数据库。
IF 4.3
Non-Coding RNA Pub Date : 2023-05-08 DOI: 10.3390/ncrna9030030
Rebecca Distefano, Mirolyuba Ilieva, Jens Hedelund Madsen, Hideshi Ishii, Masanori Aikawa, Sarah Rennie, Shizuka Uchida
{"title":"T2DB: A Web Database for Long Non-Coding RNA Genes in Type II Diabetes.","authors":"Rebecca Distefano, Mirolyuba Ilieva, Jens Hedelund Madsen, Hideshi Ishii, Masanori Aikawa, Sarah Rennie, Shizuka Uchida","doi":"10.3390/ncrna9030030","DOIUrl":"10.3390/ncrna9030030","url":null,"abstract":"<p><p>Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA <i>USP30-AS1</i>, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Non-Coding RNA Journal Club: Highlights on Recent Papers-12. 非编码RNA杂志俱乐部:最近论文的亮点-12。
IF 4.3
Non-Coding RNA Pub Date : 2023-04-18 DOI: 10.3390/ncrna9020028
Patrick K T Shiu, Mirolyuba Ilieva, Anja Holm, Shizuka Uchida, Johanna K DiStefano, Agnieszka Bronisz, Ling Yang, Yoh Asahi, Ajay Goel, Liuqing Yang, Ashok Nuthanakanti, Alexander Serganov, Suresh K Alahari, Chunru Lin, Barbara Pardini, Alessio Naccarati, Jing Jin, Beshoy Armanios, Xiao-Bo Zhong, Nikolaos Sideris, Salih Bayraktar, Leandro Castellano, André P Gerber, He Lin, Simon J Conn, Doha Magdy Mostafa Sleem, Lisa Timmons
{"title":"The <i>Non-Coding RNA</i> Journal Club: Highlights on Recent Papers-12.","authors":"Patrick K T Shiu, Mirolyuba Ilieva, Anja Holm, Shizuka Uchida, Johanna K DiStefano, Agnieszka Bronisz, Ling Yang, Yoh Asahi, Ajay Goel, Liuqing Yang, Ashok Nuthanakanti, Alexander Serganov, Suresh K Alahari, Chunru Lin, Barbara Pardini, Alessio Naccarati, Jing Jin, Beshoy Armanios, Xiao-Bo Zhong, Nikolaos Sideris, Salih Bayraktar, Leandro Castellano, André P Gerber, He Lin, Simon J Conn, Doha Magdy Mostafa Sleem, Lisa Timmons","doi":"10.3390/ncrna9020028","DOIUrl":"10.3390/ncrna9020028","url":null,"abstract":"<p><p>We are delighted to share with you our twelfth Journal Club and highlight some of the most interesting papers published recently [...].</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9697856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cystic Fibrosis Transmembrane Conductance Regulator Gene (CFTR) Is under Post-Transcriptional Control of microRNAs: Analysis of the Effects of agomiRNAs Mimicking miR-145-5p, miR-101-3p, and miR-335-5p. 囊性纤维化跨膜传导调节基因(CFTR)受microRNAs转录后控制:模拟miR-145-5p、miR-101-3p和miR-335-5p的agomiRNAs的作用分析。
IF 4.3
Non-Coding RNA Pub Date : 2023-04-18 DOI: 10.3390/ncrna9020029
Chiara Papi, Jessica Gasparello, Matteo Zurlo, Lucia Carmela Cosenza, Roberto Gambari, Alessia Finotti
{"title":"The Cystic Fibrosis Transmembrane Conductance Regulator Gene (CFTR) Is under Post-Transcriptional Control of microRNAs: Analysis of the Effects of agomiRNAs Mimicking miR-145-5p, miR-101-3p, and miR-335-5p.","authors":"Chiara Papi,&nbsp;Jessica Gasparello,&nbsp;Matteo Zurlo,&nbsp;Lucia Carmela Cosenza,&nbsp;Roberto Gambari,&nbsp;Alessia Finotti","doi":"10.3390/ncrna9020029","DOIUrl":"https://doi.org/10.3390/ncrna9020029","url":null,"abstract":"<p><p>(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: <i>CFTR</i> mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of <i>CFTR</i> mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when <i>CFTR</i> gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9374581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
MicroRNAs in Age-Related Proteostasis and Stress Responses. 年龄相关的蛋白质平衡和应激反应中的microrna。
IF 4.3
Non-Coding RNA Pub Date : 2023-04-13 DOI: 10.3390/ncrna9020026
Latika Matai, Frank J Slack
{"title":"MicroRNAs in Age-Related Proteostasis and Stress Responses.","authors":"Latika Matai,&nbsp;Frank J Slack","doi":"10.3390/ncrna9020026","DOIUrl":"https://doi.org/10.3390/ncrna9020026","url":null,"abstract":"<p><p>Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for <i>lin-4</i> in <i>C. elegans,</i> the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10096647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. 以 miRNA 和其他非编码 RNA 为靶标的治疗方法:最新进展。
IF 3.6
Non-Coding RNA Pub Date : 2023-04-13 DOI: 10.3390/ncrna9020027
Emine Bayraktar, Recep Bayraktar, Hulya Oztatlici, Gabriel Lopez-Berestein, Paola Amero, Cristian Rodriguez-Aguayo
{"title":"Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update.","authors":"Emine Bayraktar, Recep Bayraktar, Hulya Oztatlici, Gabriel Lopez-Berestein, Paola Amero, Cristian Rodriguez-Aguayo","doi":"10.3390/ncrna9020027","DOIUrl":"10.3390/ncrna9020027","url":null,"abstract":"<p><p>Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 2","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9369368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA PNKY Is Upregulated in Breast Cancer and Promotes Cell Proliferation and EMT in Breast Cancer Cells. LncRNA PNKY在乳腺癌中表达上调,促进乳腺癌细胞增殖和EMT
IF 4.3
Non-Coding RNA Pub Date : 2023-04-06 DOI: 10.3390/ncrna9020025
Forough Hakiminia, Firooz Jannat Alipoor, Mostafa Keshavarz, Malek Hossein Asadi
{"title":"LncRNA PNKY Is Upregulated in Breast Cancer and Promotes Cell Proliferation and EMT in Breast Cancer Cells.","authors":"Forough Hakiminia,&nbsp;Firooz Jannat Alipoor,&nbsp;Mostafa Keshavarz,&nbsp;Malek Hossein Asadi","doi":"10.3390/ncrna9020025","DOIUrl":"https://doi.org/10.3390/ncrna9020025","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) are known to be important regulators in different cellular processes and are implicated in various human diseases. Recently, lncRNA PNKY has been found to be involved in pluripotency and differentiation of embryonic and postnatal neural stem cells (NSCs); however, its expression and function in cancer cells is still unclear. In the present study, we observed the expression of PNKY in various cancer tissues, including brain, breast, colorectal, and prostate cancers. In particular, we demonstrated that lncRNA PNKY was significantly upregulated in breast tumors, especially high-grade tumors. Knock down experiments indicated that the suppression of PNKY in breast cancer cells could restrict their proliferation by promoting apoptosis, senescence, and cell cycle disruption. Moreover, the results demonstrated that PNKY may play a crucial role in the cell migration of breast cancer cells. We further found that PNKY may trigger EMT in breast cancer cells by upregulating miR-150 and restricting the expression of Zeb1 and Snail. This study is the first to provide new evidence on the expression and biological function of PNKY in cancer cells and its potential contribution to tumor growth and metastasis.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9361241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury. 液体活检不能很好地反映肾缺血再灌注损伤。
IF 4.3
Non-Coding RNA Pub Date : 2023-04-01 DOI: 10.3390/ncrna9020024
Adaysha C Williams, Vaishali Singh, Pengyuan Liu, Alison J Kriegel
{"title":"Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury.","authors":"Adaysha C Williams,&nbsp;Vaishali Singh,&nbsp;Pengyuan Liu,&nbsp;Alison J Kriegel","doi":"10.3390/ncrna9020024","DOIUrl":"https://doi.org/10.3390/ncrna9020024","url":null,"abstract":"<p><p>Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R<sup>2</sup> = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9425912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信