A Multi-Input Neural Network Model for Accurate MicroRNA Target Site Detection.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mohammad Mohebbi, Amirhossein Manzourolajdad, Ethan Bennett, Phillip Williams
{"title":"A Multi-Input Neural Network Model for Accurate MicroRNA Target Site Detection.","authors":"Mohammad Mohebbi, Amirhossein Manzourolajdad, Ethan Bennett, Phillip Williams","doi":"10.3390/ncrna11020023","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: MicroRNAs are non-coding RNA sequences that regulate cellular functions by targeting messenger RNAs and inhibiting protein synthesis. Identifying their target sites is vital to understanding their roles. However, it is challenging due to the high cost and time demands of experimental methods and the high false-positive rates of computational approaches. (2) Methods: We introduce a Multi-Input Neural Network (MINN) algorithm that integrates diverse biologically relevant features, including the microRNA duplex structure, substructures, minimum free energy, and base-pairing probabilities. For each feature derived from a microRNA target-site duplex, we create a corresponding image. These images are processed in parallel by the MINN algorithm, allowing it to learn a comprehensive and precise representation of the underlying biological mechanisms. (3) Results: Our method, on an experimentally validated test set, detects target sites with an AUPRC of 0.9373, Precision of 0.8725, and Recall of 0.8703 and outperforms several commonly used computational methods of microRNA target-site predictions. (4) Conclusions: Incorporating diverse biologically explainable features, such as duplex structure, substructures, their MFEs, and binding probabilities, enables our model to perform well on experimentally validated test data. These features, rather than nucleotide sequences, enhance our model to generalize beyond specific sequence contexts and perform well on sequentially distant samples.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: MicroRNAs are non-coding RNA sequences that regulate cellular functions by targeting messenger RNAs and inhibiting protein synthesis. Identifying their target sites is vital to understanding their roles. However, it is challenging due to the high cost and time demands of experimental methods and the high false-positive rates of computational approaches. (2) Methods: We introduce a Multi-Input Neural Network (MINN) algorithm that integrates diverse biologically relevant features, including the microRNA duplex structure, substructures, minimum free energy, and base-pairing probabilities. For each feature derived from a microRNA target-site duplex, we create a corresponding image. These images are processed in parallel by the MINN algorithm, allowing it to learn a comprehensive and precise representation of the underlying biological mechanisms. (3) Results: Our method, on an experimentally validated test set, detects target sites with an AUPRC of 0.9373, Precision of 0.8725, and Recall of 0.8703 and outperforms several commonly used computational methods of microRNA target-site predictions. (4) Conclusions: Incorporating diverse biologically explainable features, such as duplex structure, substructures, their MFEs, and binding probabilities, enables our model to perform well on experimentally validated test data. These features, rather than nucleotide sequences, enhance our model to generalize beyond specific sequence contexts and perform well on sequentially distant samples.

用于精确检测 MicroRNA 靶点的多输入神经网络模型
(1) 背景:MicroRNA 是一种非编码 RNA 序列,通过靶向信使 RNA 和抑制蛋白质合成来调节细胞功能。确定其靶点对了解其作用至关重要。然而,由于实验方法的高成本和时间要求以及计算方法的高假阳性率,这项工作极具挑战性。(2) 方法:我们引入了一种多输入神经网络(MINN)算法,该算法整合了多种生物相关特征,包括 microRNA 双链体结构、亚结构、最小自由能和碱基配对概率。对于从 microRNA 目标位点双链体得出的每个特征,我们都会创建相应的图像。MINN 算法对这些图像进行并行处理,使其能够全面、精确地了解潜在的生物机制。(3) 结果:在经过实验验证的测试集上,我们的方法以 0.9373 的 AUPRC、0.8725 的 Precision 和 0.8703 的 Recall 检测到目标位点,优于几种常用的 microRNA 目标位点预测计算方法。(4) 结论:纳入多种生物可解释特征,如双链结构、子结构、它们的 MFE 和结合概率,使我们的模型在实验验证的测试数据上表现出色。这些特征(而不是核苷酸序列)增强了我们模型的通用性,使其超越了特定的序列上下文,并在序列距离较远的样本上表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信