Olga R Borodulina, Sergey A Kosushkin, Ilia G Ustyantsev, Nikita S Vassetzky, Dmitri A Kramerov
{"title":"Analysis of RNA Transcribed by RNA Polymerase III from B2 SINEs in Mouse Cells.","authors":"Olga R Borodulina, Sergey A Kosushkin, Ilia G Ustyantsev, Nikita S Vassetzky, Dmitri A Kramerov","doi":"10.3390/ncrna11030039","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> SINEs (short interspersed elements) are eukaryotic non-autonomous retrotransposons. They are transcribed by RNA polymerase III (pol III) and generate non-coding RNAs. The 3' end of many mammalian SINEs contains a polyadenylation signal (AATAAA), a pol III transcription terminator, and an A-rich tail. Studies have shown that, in human HeLa cells that have been transiently transfected with such SINEs, short pol III-generated SINE transcripts undergo polyadenylation, resulting in the addition of a long poly(A)-tail. Notably, this AAUAAA-dependent polyadenylation is not characteristic of any other transcripts synthesized by pol III. B2 SINEs, found in the genomes of mouse-like rodents, exemplify all these features. <b>Methods:</b> In this study, we implemented a novel approach to sequencing pol III-generated B2 transcripts from mouse cell cultures (L929 and 4T1) and organs (brain and testis). <b>Results:</b> Transcription occurred in 16,000-20,000 B2 copies in each cell type, 51-62% of which were transcribed in all four cell types. Effective transcription terminators (e.g., TCT<sub>>3</sub> and T<sub>≥4</sub>) were found in approximately 40% of the transcribed B2 copies. The transcripts of these B2 copies contained a truncated terminator sequence, as pol III transcriptional arrest is known to occur within the terminator, with a poly(A)-tail immediately downstream. Such a tail could only have formed through RNA polyadenylation. <b>Conclusions:</b> These results demonstrate that B2 transcripts synthesized by pol III are capable of polyadenylation in mouse cells. We discuss the transcription of B2 copies with and without moderately efficient pol III terminators (TCTTT) and provide examples of the polyadenylation of such transcripts.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: SINEs (short interspersed elements) are eukaryotic non-autonomous retrotransposons. They are transcribed by RNA polymerase III (pol III) and generate non-coding RNAs. The 3' end of many mammalian SINEs contains a polyadenylation signal (AATAAA), a pol III transcription terminator, and an A-rich tail. Studies have shown that, in human HeLa cells that have been transiently transfected with such SINEs, short pol III-generated SINE transcripts undergo polyadenylation, resulting in the addition of a long poly(A)-tail. Notably, this AAUAAA-dependent polyadenylation is not characteristic of any other transcripts synthesized by pol III. B2 SINEs, found in the genomes of mouse-like rodents, exemplify all these features. Methods: In this study, we implemented a novel approach to sequencing pol III-generated B2 transcripts from mouse cell cultures (L929 and 4T1) and organs (brain and testis). Results: Transcription occurred in 16,000-20,000 B2 copies in each cell type, 51-62% of which were transcribed in all four cell types. Effective transcription terminators (e.g., TCT>3 and T≥4) were found in approximately 40% of the transcribed B2 copies. The transcripts of these B2 copies contained a truncated terminator sequence, as pol III transcriptional arrest is known to occur within the terminator, with a poly(A)-tail immediately downstream. Such a tail could only have formed through RNA polyadenylation. Conclusions: These results demonstrate that B2 transcripts synthesized by pol III are capable of polyadenylation in mouse cells. We discuss the transcription of B2 copies with and without moderately efficient pol III terminators (TCTTT) and provide examples of the polyadenylation of such transcripts.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.