Human XIST: Origin and Divergence of a cis-Acting Silencing RNA.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maria Jose Navarro-Cobos, Carolyn J Brown
{"title":"Human XIST: Origin and Divergence of a <i>cis</i>-Acting Silencing RNA.","authors":"Maria Jose Navarro-Cobos, Carolyn J Brown","doi":"10.3390/ncrna11030035","DOIUrl":null,"url":null,"abstract":"<p><p>Dimorphism of sex chromosomes often leads to a need for dosage compensation. In eutherian mammals, XIST, a long non-coding RNA, is expressed from the X chromosome that will be silenced, triggering X-chromosome inactivation (XCI). XIST originated from the ancestral protein-coding <i>Lnx3</i> gene with contributions from various mobile elements that contributed to the striking domains of tandem repeats within the first and sixth exons. Modular domains of XIST are now involved in recruiting heterochromatic marks and proteins essential for XCI initiation and maintenance. This review presents a comparative analysis of human <i>XIST</i> with five other eutherian mammals-chimpanzees, cats, pigs, sheep, and mice-examining conservation across exons as well as the tandem repeats. Notably, repeats exhibited higher conservation than exons, underscoring their functional importance. Additionally, a species-specific G repeat, previously described in pigs, was also identified in sheep and cats. These findings provide insights into the domains of XIST, a <i>cis</i>-acting silencer that has been used to proposed to alleviate the impact of a supernumerary chromosome in Down syndrome.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11030035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dimorphism of sex chromosomes often leads to a need for dosage compensation. In eutherian mammals, XIST, a long non-coding RNA, is expressed from the X chromosome that will be silenced, triggering X-chromosome inactivation (XCI). XIST originated from the ancestral protein-coding Lnx3 gene with contributions from various mobile elements that contributed to the striking domains of tandem repeats within the first and sixth exons. Modular domains of XIST are now involved in recruiting heterochromatic marks and proteins essential for XCI initiation and maintenance. This review presents a comparative analysis of human XIST with five other eutherian mammals-chimpanzees, cats, pigs, sheep, and mice-examining conservation across exons as well as the tandem repeats. Notably, repeats exhibited higher conservation than exons, underscoring their functional importance. Additionally, a species-specific G repeat, previously described in pigs, was also identified in sheep and cats. These findings provide insights into the domains of XIST, a cis-acting silencer that has been used to proposed to alleviate the impact of a supernumerary chromosome in Down syndrome.

人类XIST:一种顺式沉默RNA的起源和分化。
性染色体的二态性常常导致需要剂量补偿。在真动物哺乳动物中,XIST,一种长链非编码RNA,从X染色体表达,将被沉默,触发X染色体失活(XCI)。XIST起源于祖先的蛋白质编码基因Lnx3,在第一和第六外显子的串联重复序列的突出区域中有各种可移动元件的贡献。XIST的模块结构域现在参与募集异色标记和XCI起始和维持所必需的蛋白质。本文综述了人类XIST与其他五种哺乳动物(黑猩猩、猫、猪、羊和小鼠)的比较分析,考察了外显子和串联重复序列的保守性。值得注意的是,重复序列比外显子表现出更高的保守性,强调了它们的功能重要性。此外,先前在猪中描述的物种特异性G重复序列也在羊和猫中发现。这些发现提供了对XIST结构域的见解,XIST是一种顺式作用的沉默者,已被用于减轻唐氏综合症中多余染色体的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信