npj Quantum Information最新文献

筛选
英文 中文
Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies 线性拓扑、环状拓扑和全连接拓扑上的 2 局域自旋系统动态列阵的分类
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-06 DOI: 10.1038/s41534-024-00900-2
Roeland Wiersema, Efekan Kökcü, Alexander F. Kemper, Bojko N. Bakalov
{"title":"Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies","authors":"Roeland Wiersema, Efekan Kökcü, Alexander F. Kemper, Bojko N. Bakalov","doi":"10.1038/s41534-024-00900-2","DOIUrl":"https://doi.org/10.1038/s41534-024-00900-2","url":null,"abstract":"<p>Much is understood about 1-dimensional spin chains in terms of entanglement properties, physical phases, and integrability. However, the Lie algebraic properties of the Hamiltonians describing these systems remain largely unexplored. In this work, we provide a classification of all Lie algebras generated by the terms of 2-local spin chain Hamiltonians, or so-called dynamical Lie algebras, on 1-dimensional linear and circular lattice structures. We find 17 unique dynamical Lie algebras. Our classification includes some well-known models such as the transverse-field Ising model and the Heisenberg chain, and we also find more exotic classes of Hamiltonians that appear new. In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches. We discuss the practical implications of our work in the context of variational quantum computing, quantum control and the spin chain literature.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"69 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-optimal control of a solid-state spin amidst dynamical quantum wind 动态量子风中固态自旋的时间优化控制
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-05 DOI: 10.1038/s41534-024-00912-y
Yang Dong, Wang Jiang, Xue-Dong Gao, Cui Yu, Yong Liu, Shao-Chun Zhang, Xiang-Dong Chen, Ibério de P. R. Moreira, Josep Maria Bofill, Gael Sentís, Ramón Ramos, Guillermo Albareda, Guang-Can Guo, Fang-Wen Sun
{"title":"Time-optimal control of a solid-state spin amidst dynamical quantum wind","authors":"Yang Dong, Wang Jiang, Xue-Dong Gao, Cui Yu, Yong Liu, Shao-Chun Zhang, Xiang-Dong Chen, Ibério de P. R. Moreira, Josep Maria Bofill, Gael Sentís, Ramón Ramos, Guillermo Albareda, Guang-Can Guo, Fang-Wen Sun","doi":"10.1038/s41534-024-00912-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00912-y","url":null,"abstract":"<p>Time-optimal control holds promise across the full spectrum of quantum technologies, where the rapid generation of unitary gates and state transformations is crucial to mitigate decoherence effects. In practical scenarios, quantum systems are always immersed in an external time-dependent field or potential, either owing to the inevitable influence of the environment or as a sought-after effect for enhanced coherence. The challenge then lies in finding the time-optimal approach to navigate quantum systems amidst dynamical ambient Hamiltonians, a pursuit that has proven elusive thus far. We showcase the implementation of arbitrary quantum state transformations and a universal set of single-qubit gates under a background Landau-Zener Hamiltonian. Leveraging the favorable coherence properties of timedomain Rabi oscillations, we achieve velocities surpassing the Mandelstam-Tamm quantum speed limit and significantly lower energy costs than those incurred by conventional quantum control techniques. These findings highlight a promising pathway to expedite and economize high-fidelity quantum operations.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"127 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qubit teleportation between a memory-compatible photonic time-bin qubit and a solid-state quantum network node 兼容存储器的光子时空比特与固态量子网络节点之间的量子传送
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-02 DOI: 10.1038/s41534-024-00910-0
Mariagrazia Iuliano, Marie-Christine Slater, Arian J. Stolk, Matthew J. Weaver, Tanmoy Chakraborty, Elsie Loukiantchenko, Gustavo C. do Amaral, Nir Alfasi, Mariya O. Sholkina, Wolfgang Tittel, Ronald Hanson
{"title":"Qubit teleportation between a memory-compatible photonic time-bin qubit and a solid-state quantum network node","authors":"Mariagrazia Iuliano, Marie-Christine Slater, Arian J. Stolk, Matthew J. Weaver, Tanmoy Chakraborty, Elsie Loukiantchenko, Gustavo C. do Amaral, Nir Alfasi, Mariya O. Sholkina, Wolfgang Tittel, Ronald Hanson","doi":"10.1038/s41534-024-00910-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00910-0","url":null,"abstract":"<p>We report on a quantum interface linking a diamond NV center quantum network node and 795nm photonic time-bin qubits compatible with Thulium and Rubidium quantum memories. The interface makes use of two-stage low-noise quantum frequency conversion and waveform shaping to match temporal and spectral photon profiles. Two-photon quantum interference shows high indistinguishability between converted 795nm photons and the native NV center photons. We use the interface to demonstrate quantum teleportation including real-time feedforward from an unbiased set of 795nm photonic qubit input states to the NV center spin qubit, achieving a teleportation fidelity well above the classical bound. This proof-of-concept experiment shows the feasibility of interconnecting different quantum network hardware.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"33 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An architecture for two-qubit encoding in neutral ytterbium-171 atoms 中性镱-171 原子中的双量子比特编码架构
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-02 DOI: 10.1038/s41534-024-00898-7
Zhubing Jia, William Huie, Lintao Li, Won Kyu Calvin Sun, Xiye Hu, Aakash, Healey Kogan, Abhishek Karve, Jong Yeon Lee, Jacob P. Covey
{"title":"An architecture for two-qubit encoding in neutral ytterbium-171 atoms","authors":"Zhubing Jia, William Huie, Lintao Li, Won Kyu Calvin Sun, Xiye Hu, Aakash, Healey Kogan, Abhishek Karve, Jong Yeon Lee, Jacob P. Covey","doi":"10.1038/s41534-024-00898-7","DOIUrl":"https://doi.org/10.1038/s41534-024-00898-7","url":null,"abstract":"<p>We present an architecture for encoding two qubits within the optical “clock” transition and nuclear spin-1/2 degree of freedom of neutral ytterbium-171 atoms. Inspired by recent high-fidelity control of all pairs of states within this four-dimensional quotes space, we present a toolbox for intra-ququart (single-atom) one- and two-qubit gates, inter-ququart (two-atom) Rydberg-based two- and four-qubit gates, and quantum nondemolition (QND) readout. We then use this toolbox to demonstrate the advantages of the ququart encoding for entanglement distillation and quantum error correction which exhibit superior hardware efficiency and better performance in some cases since fewer two-atom operations are required. Finally, leveraging single-state QND readout in our ququart encoding, we present a unique approach to studying interactive circuits and to realizing a symmetry protected topological phase of a spin-1 chain with a shallow, constant-depth circuit.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"141 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data needs and challenges for quantum dot devices automation 量子点设备自动化的数据需求和挑战
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-10-31 DOI: 10.1038/s41534-024-00878-x
Justyna P. Zwolak, Jacob M. Taylor, Reed W. Andrews, Jared Benson, Garnett W. Bryant, Donovan Buterakos, Anasua Chatterjee, Sankar Das Sarma, Mark A. Eriksson, Eliška Greplová, Michael J. Gullans, Fabian Hader, Tyler J. Kovach, Pranav S. Mundada, Mick Ramsey, Torbjørn Rasmussen, Brandon Severin, Anthony Sigillito, Brennan Undseth, Brian Weber
{"title":"Data needs and challenges for quantum dot devices automation","authors":"Justyna P. Zwolak, Jacob M. Taylor, Reed W. Andrews, Jared Benson, Garnett W. Bryant, Donovan Buterakos, Anasua Chatterjee, Sankar Das Sarma, Mark A. Eriksson, Eliška Greplová, Michael J. Gullans, Fabian Hader, Tyler J. Kovach, Pranav S. Mundada, Mick Ramsey, Torbjørn Rasmussen, Brandon Severin, Anthony Sigillito, Brennan Undseth, Brian Weber","doi":"10.1038/s41534-024-00878-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00878-x","url":null,"abstract":"Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. This meeting report outlines current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present insights and ideas put forward by the quantum dot community on how to overcome them. We aim to provide guidance and inspiration to researchers invested in automation efforts.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"239 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust projective measurements through measuring code-inspired observables 通过测量代码启发的观测值进行稳健的投影测量
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-10-26 DOI: 10.1038/s41534-024-00904-y
Yingkai Ouyang
{"title":"Robust projective measurements through measuring code-inspired observables","authors":"Yingkai Ouyang","doi":"10.1038/s41534-024-00904-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00904-y","url":null,"abstract":"<p>Quantum measurements are ubiquitous in quantum information processing tasks, but errors can render their outputs unreliable. Here, we present a scheme that implements a robust projective measurement through measuring code-inspired observables. Namely, given a projective POVM, a classical code, and a constraint on the number of measurement outcomes each observable can have, we construct commuting observables whose measurement is equivalent to the projective measurement in the noiseless setting. Moreover, we can correct <i>t</i> errors on the classical outcomes of the observables’ measurement if the classical code corrects <i>t</i> errors. Since our scheme does not require the encoding of quantum data onto a quantum error correction code, it can help construct robust measurements for near-term quantum algorithms that do not use quantum error correction. Moreover, our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"41 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending radiowave frequency detection range with dressed states of solid-state spin ensembles 利用固态自旋组合的掺杂态扩展辐射波频率探测范围
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-10-26 DOI: 10.1038/s41534-024-00891-0
Jens C. Hermann, Roberto Rizzato, Fleming Bruckmaier, Robin D. Allert, Aharon Blank, Dominik B. Bucher
{"title":"Extending radiowave frequency detection range with dressed states of solid-state spin ensembles","authors":"Jens C. Hermann, Roberto Rizzato, Fleming Bruckmaier, Robin D. Allert, Aharon Blank, Dominik B. Bucher","doi":"10.1038/s41534-024-00891-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00891-0","url":null,"abstract":"<p>Quantum sensors using solid-state spin defects excel in the detection of radiofrequency (RF) fields, serving various applications in communication, ranging, and sensing. For this purpose, pulsed dynamical decoupling (PDD) protocols are typically applied, which enhance sensitivity to RF signals. However, these methods are limited to frequencies of a few megahertz, which poses a challenge for sensing higher frequencies. We introduce an alternative approach based on a continuous dynamical decoupling (CDD) scheme involving dressed states of nitrogen vacancy (NV) ensemble spins driven within a microwave resonator. We compare the CDD methods to established PDD protocols and demonstrate the detection of RF signals up to ~85 MHz, about ten times the current limit imposed by the PDD approach under identical conditions. Implementing the CDD method in a heterodyne/synchronized protocol combines the high-frequency detection with high spectral resolution. This advancement extends to various domains requiring detection in the high frequency (HF) and very high frequency (VHF) ranges of the RF spectrum, including spin sensor-based magnetic resonance spectroscopy at high magnetic fields.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"3 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of planar germanium hole qubits in electric and magnetic fields 电场和磁场中的平面锗空穴量子比特建模
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-10-17 DOI: 10.1038/s41534-024-00897-8
Chien-An Wang, H. Ekmel Ercan, Mark F. Gyure, Giordano Scappucci, Menno Veldhorst, Maximilian Rimbach-Russ
{"title":"Modeling of planar germanium hole qubits in electric and magnetic fields","authors":"Chien-An Wang, H. Ekmel Ercan, Mark F. Gyure, Giordano Scappucci, Menno Veldhorst, Maximilian Rimbach-Russ","doi":"10.1038/s41534-024-00897-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00897-8","url":null,"abstract":"<p>Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favorable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric fields. However, it also couples the qubit to electrical noise. In this work, we perform simulations of a heterostructure hosting these hole spin qubits. We solve the effective mass equations for a realistic heterostructure, provide a set of analytical basis wavefunctions, and compute the effective g-factor of the heavy-hole ground state. Our investigations reveal a strong impact of highly excited light-hole states located outside the quantum well on the g-factor. We find that sweet spots, points of operations that are least susceptible to charge noise, for out-of-plane magnetic fields are shifted to impractically large electric fields. However, for magnetic fields close to in-plane alignment, partial sweet spots at low electric fields are recovered. Furthermore, sweet spots with respect to multiple fluctuating charge traps can be found under certain circumstances for different magnetic field alignments. This work will be helpful in understanding and improving the coherence of germanium hole spin qubits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"12 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the computational reach of a superconducting qutrit processor 扩展超导 Qutrit 处理器的计算范围
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-10-14 DOI: 10.1038/s41534-024-00892-z
Noah Goss, Samuele Ferracin, Akel Hashim, Arnaud Carignan-Dugas, John Mark Kreikebaum, Ravi K. Naik, David I. Santiago, Irfan Siddiqi
{"title":"Extending the computational reach of a superconducting qutrit processor","authors":"Noah Goss, Samuele Ferracin, Akel Hashim, Arnaud Carignan-Dugas, John Mark Kreikebaum, Ravi K. Naik, David I. Santiago, Irfan Siddiqi","doi":"10.1038/s41534-024-00892-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00892-z","url":null,"abstract":"<p>Quantum computing with qudits is an emerging approach that exploits a larger, more connected computational space, providing advantages for many applications, including quantum simulation and quantum error correction. Nonetheless, qudits are typically afflicted by more complex errors and suffer greater noise sensitivity which renders their scaling difficult. In this work, we introduce techniques to tailor arbitrary qudit Markovian noise to stochastic Weyl–Heisenberg channels and mitigate noise that commutes with our Clifford and universal two-qudit gate in generic qudit circuits. We experimentally demonstrate these methods on a superconducting transmon qutrit processor, and benchmark their effectiveness for multipartite qutrit entanglement and random circuit sampling, obtaining up to 3× improvement in our results. To the best of our knowledge, this constitutes the first-ever error mitigation experiment performed on qutrits. Our work shows that despite the intrinsic complexity of manipulating higher-dimensional quantum systems, noise tailoring and error mitigation can significantly extend the computational reach of today’s qudit processors.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"17 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo twirling mitigation of coherent errors in non-Clifford gates 非克里福德门中相干误差的伪旋转缓解
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-10-11 DOI: 10.1038/s41534-024-00889-8
Jader P. Santos, Ben Bar, Raam Uzdin
{"title":"Pseudo twirling mitigation of coherent errors in non-Clifford gates","authors":"Jader P. Santos, Ben Bar, Raam Uzdin","doi":"10.1038/s41534-024-00889-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00889-8","url":null,"abstract":"<p>The conventional circuit paradigm, utilizing a small set of gates to construct arbitrary quantum circuits, is hindered by significant noise. In the quantum Fourier transform, for instance, the standard gate paradigm employs two CNOT gates for the partial CPhase. In contrast, some quantum computers can directly implement such operations using their native interaction, resulting in less noisy gates. Unfortunately, coherent errors degrade the performance of these gates. In Clifford gates such as the CNOT, these errors can be addressed through randomized compiling (RC). However, RC does not apply to the non-Clifford multi-qubit native implementations described above. The present work introduces and experimentally demonstrates a technique called ‘Pseudo Twirling’ (PST) to address coherent errors. We demonstrate experimentally that integrating PST with the ‘Adaptive KIK’ quantum error mitigation method enables the simultaneous mitigation of noise and coherent errors in multi-qubit non-Clifford gates.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"60 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信