Stephan Kucera, Christian Haen, Elena Arenskötter, Tobias Bauer, Jonas Meiers, Marlon Schäfer, Ross Boland, Milad Yahyapour, Maurice Lessing, Ronald Holzwarth, Christoph Becher, Jürgen Eschner
{"title":"Demonstration of quantum network protocols over a 14-km urban fiber link","authors":"Stephan Kucera, Christian Haen, Elena Arenskötter, Tobias Bauer, Jonas Meiers, Marlon Schäfer, Ross Boland, Milad Yahyapour, Maurice Lessing, Ronald Holzwarth, Christoph Becher, Jürgen Eschner","doi":"10.1038/s41534-024-00886-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00886-x","url":null,"abstract":"<p>We report on the implementation of quantum entanglement distribution and quantum state teleportation over a 14.4 km urban dark-fiber link, which is partially underground, partially overhead, and patched in several stations. We characterize the link for its use as a quantum channel and realize its active polarization stabilization. Using a type-II cavity-enhanced SPDC photon pair source, a <sup>40</sup>Ca<sup>+</sup> single-ion quantum memory, and quantum frequency conversion to the telecom C-band, we demonstrate photon-photon entanglement, ion-photon entanglement, and teleportation of a qubit state from the ion onto a remote telecom photon, all realized over the urban fiber link.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiří Fadrný, Michal Neset, Martin Bielak, Miroslav Ježek, Jan Bílek, Jaromír Fiurášek
{"title":"Experimental preparation of multiphoton-added coherent states of light","authors":"Jiří Fadrný, Michal Neset, Martin Bielak, Miroslav Ježek, Jan Bílek, Jaromír Fiurášek","doi":"10.1038/s41534-024-00885-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00885-y","url":null,"abstract":"<p>Conditional addition of photons represents a crucial tool for optical quantum state engineering and it forms a fundamental building block of advanced quantum photonic devices. Here we report on experimental implementation of the conditional addition of several photons. We demonstrate the addition of one, two, and three photons to input coherent states with various amplitudes. The resulting highly nonclassical photon-added states are completely characterized with time-domain homodyne tomography, and the nonclassicality of the prepared states is witnessed by the negativity of their Wigner functions. We experimentally demonstrate that the conditional addition of photons realizes approximate noiseless quantum amplification of coherent states with sufficiently large amplitude. We also investigate certification of the stellar rank of the generated multiphoton-added coherent states, which quantifies the non-Gaussian resources required for their preparation. Our results pave the way towards the experimental realization of complex optical quantum operations based on combination of multiple photon additions and subtractions.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An extremely bad-cavity laser","authors":"Jia Zhang, Tiantian Shi, Jianxiang Miao, Deshui Yu, Jingbiao Chen","doi":"10.1038/s41534-024-00880-3","DOIUrl":"https://doi.org/10.1038/s41534-024-00880-3","url":null,"abstract":"<p>Lasing in the bad-cavity regime has promising applications in quantum precision measurement and frequency metrology due to the reduced sensitivity of the laser frequency to cavity-length fluctuations. Thus far, relevant studies have been mainly focused on conventional cavities whose finesse is high enough that the resonance linewidth is sufficiently narrow compared to the cavity’s free spectral range, though still in the bad-cavity regime. However, lasing output from the cavity whose finesse is close to the limit of 2 has never been experimentally accessed. Here, we demonstrate an extremely bad-cavity laser, analyze the physical mechanisms limiting cavity finesse, and report on the worst-ever laser cavity with finesse reaching 2.01. The optical cavity has a reflectance close to zero and only provides weak optical feedback. The laser power can be as high as tens of <i>μ</i>W and the spectral linewidth reaches a few kHz, over one thousand times narrower than the gain bandwidth. In addition, the measurement of cavity pulling reveals a pulling coefficient of 0.0148, the lowest value ever achieved for a continuous-wave laser. Our findings open up an unprecedentedly innovative perspective for future new ultra-stable lasers, which could possibly trigger future discoveries in optical clocks, cavity QED, continuous-wave superradiant laser, and explorations of quantum many-body physics.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hailan Ma, Gary J. Mooney, Ian R. Petersen, Lloyd C. L. Hollenberg, Daoyi Dong
{"title":"Quantum autoencoders using mixed reference states","authors":"Hailan Ma, Gary J. Mooney, Ian R. Petersen, Lloyd C. L. Hollenberg, Daoyi Dong","doi":"10.1038/s41534-024-00872-3","DOIUrl":"https://doi.org/10.1038/s41534-024-00872-3","url":null,"abstract":"<p>One of the fundamental tasks in quantum information theory is quantum data compression, which can be realized via quantum autoencoders that first compress quantum states to low-dimensional ones and then recover to the original ones with a reference state. When taking a pure reference state, there exists an upper bound for the encoding fidelity, which limits the compression of states with high entropy. To overcome the entropy inconsistency, we allow the reference state to be a mixed state and propose a cost function that combines the encoding fidelity and the quantum mutual information. We consider the reference states to be a mixture of maximally mixed states and pure states and propose three strategies for setting the ratio of mixedness. Numerical simulations of different states and experimental implementations on IBM quantum computers illustrate the effectiveness of our approach.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheng-Hsuan Huang, Thomas Dirmeier, Golnoush Shafiee, Kaisa Laiho, Dmitry V. Strekalov, Gerd Leuchs, Christoph Marquardt
{"title":"Polarization-entangled photons from a whispering gallery resonator","authors":"Sheng-Hsuan Huang, Thomas Dirmeier, Golnoush Shafiee, Kaisa Laiho, Dmitry V. Strekalov, Gerd Leuchs, Christoph Marquardt","doi":"10.1038/s41534-024-00876-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00876-z","url":null,"abstract":"<p>Crystalline whispering gallery mode resonators (WGMRs) have been shown to facilitate versatile sources of quantum states that can efficiently interact with atomic systems. These features make WGMRs an efficient platform for quantum information processing. Here, we experimentally show that it is possible to generate polarization entanglement from WGMRs by using an interferometric scheme. Our scheme gives us the flexibility to control the phase of the generated entangled state by changing the relative phase of the interferometer. The <i>S</i> value of Clauser–Horne–Shimony–Holt’s inequality in the system is 2.45 ± 0.07, which violates the inequality by more than six standard deviations.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timo Eckstein, Refik Mansuroglu, Piotr Czarnik, Jian-Xin Zhu, Michael J. Hartmann, Lukasz Cincio, Andrew T. Sornborger, Zoë Holmes
{"title":"Large-scale simulations of Floquet physics on near-term quantum computers","authors":"Timo Eckstein, Refik Mansuroglu, Piotr Czarnik, Jian-Xin Zhu, Michael J. Hartmann, Lukasz Cincio, Andrew T. Sornborger, Zoë Holmes","doi":"10.1038/s41534-024-00866-1","DOIUrl":"https://doi.org/10.1038/s41534-024-00866-1","url":null,"abstract":"<p>Periodically driven quantum systems exhibit a diverse set of phenomena but are more challenging to simulate than their equilibrium counterparts. Here, we introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware. Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian. This allows prior methods for time-independent simulation to be lifted to simulate Floquet systems. We use the periodically driven biaxial next-nearest neighbor Ising (BNNNI) model, a natural test bed for quantum frustrated magnetism and criticality, as a case study to illustrate our algorithm. We implemented a 20-qubit simulation of the driven two-dimensional BNNNI model on Quantinuum’s trapped ion quantum computer. Our error analysis shows that QHiFFS exhibits not only a cubic advantage in driving frequency <i>ω</i> but also a linear advantage in simulation time <i>t</i> compared to Trotterization.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heisenberg-limited Hamiltonian learning for interacting bosons","authors":"Haoya Li, Yu Tong, Tuvia Gefen, Hongkang Ni, Lexing Ying","doi":"10.1038/s41534-024-00881-2","DOIUrl":"https://doi.org/10.1038/s41534-024-00881-2","url":null,"abstract":"<p>We develop a protocol for learning a class of interacting bosonic Hamiltonians from dynamics with Heisenberg-limited scaling. For Hamiltonians with an underlying bounded-degree graph structure, we can learn all parameters with root mean square error <i>ϵ</i> using <span>({mathcal{O}}(1/epsilon ))</span> total evolution time, which is independent of the system size, in a way that is robust against state-preparation and measurement error. In the protocol, we only use bosonic coherent states, beam splitters, phase shifters, and homodyne measurements, which are easy to implement on many experimental platforms. A key technique we develop is to apply random unitaries to enforce symmetry in the effective Hamiltonian, which may be of independent interest.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hamiltonian dynamics on digital quantum computers without discretization error","authors":"Etienne Granet, Henrik Dreyer","doi":"10.1038/s41534-024-00877-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00877-y","url":null,"abstract":"<p>We introduce an algorithm to compute expectation values of time-evolved observables on digital quantum computers that requires only bounded average circuit depth to reach arbitrary precision, i.e. produces an unbiased estimator with finite average depth. This finite depth comes with an attenuation of the measured expectation value by a known amplitude, requiring more shots per circuit. The average gate count per circuit for simulation time <i>t</i> is <span>({mathcal{O}}({t}^{2}{mu }^{2}))</span> with <i>μ</i> the sum of the Hamiltonian coefficients, without dependence on precision, providing a significant improvement over previous algorithms. With shot noise, the average runtime is <span>({mathcal{O}}({t}^{2}{mu }^{2}{epsilon }^{-2}))</span> to reach precision <i>ϵ</i>. The only dependence in the sum of the coefficients makes it particularly adapted to non-sparse Hamiltonians. The algorithm generalizes to time-dependent Hamiltonians, appearing for example in adiabatic state preparation. These properties make it particularly suitable for present-day relatively noisy hardware that supports only circuits with moderate depth.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Sannia, Francesco Tacchino, Ivano Tavernelli, Gian Luca Giorgi, Roberta Zambrini
{"title":"Engineered dissipation to mitigate barren plateaus","authors":"Antonio Sannia, Francesco Tacchino, Ivano Tavernelli, Gian Luca Giorgi, Roberta Zambrini","doi":"10.1038/s41534-024-00875-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00875-0","url":null,"abstract":"<p>Variational quantum algorithms represent a powerful approach for solving optimization problems on noisy quantum computers, with a broad spectrum of potential applications ranging from chemistry to machine learning. However, their performances in practical implementations crucially depend on the effectiveness of quantum circuit training, which can be severely limited by phenomena such as barren plateaus. While, in general, dissipation is detrimental for quantum algorithms, and noise itself can actually induce barren plateaus, here we describe how the inclusion of properly engineered Markovian losses after each unitary quantum circuit layer allows for the trainability of quantum models. We identify the required form of the dissipation processes and establish that their optimization is efficient. We benchmark the generality of our proposal in both a synthetic and a practical quantum chemistry example, demonstrating its effectiveness and potential impact across different domains.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López
{"title":"MadQCI: a heterogeneous and scalable SDN-QKD network deployed in production facilities","authors":"V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López","doi":"10.1038/s41534-024-00873-2","DOIUrl":"https://doi.org/10.1038/s41534-024-00873-2","url":null,"abstract":"<p>Current quantum key distribution (QKD) networks focus almost exclusively on transporting secret keys at the highest possible rate. Consequently, they are built as mostly fixed, ad hoc, logically, and physically isolated infrastructures designed to avoid any penalty to the quantum channel. This architecture is neither scalable nor cost-effective and future, real-world deployments will differ considerably. The structure of the MadQCI QKD network presented here is based on disaggregated components and modern paradigms especially designed for flexibility, upgradability, and facilitating the integration of QKD in the security and telecommunications-networks ecosystem. These underlying ideas have been tested by deploying many QKD systems from several manufacturers in a real-world, multi-tenant telecommunications network, installed in production facilities and sharing the infrastructure with commercial traffic. Different technologies have been used in different links to address the variety of situations and needs that arise in real networks, exploring a wide range of possibilities. Finally, a set of realistic use cases has been implemented to demonstrate the validity and performance of the network. The testing took place during a period close to three years, where most of the nodes were continuously active.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}